欢迎来到 Comprehensive Rust 🦀

这是一个由 Android 团队开发的四天学会 Rust 的课程。这个课程涵盖 Rust 从基础语法到泛型和错误处理的所有方面。它还包含了 Android 特有的内容于最后一天。

这个课程的目标是教你 Rust。我们假设你不知道 Rust 的任何东西并希望:

  • 让你全面了解 Rust 语法和语言。
  • 让你可以修改现有的 Rust 程序和编写新的 Rust 程序。
  • 展示常见的 Rust 习语。

在第 4 天,我们将包含一些安卓特有的东西,比如:

  • 使用 Rust 构建安卓组件。
  • AIDL 服务器和客户端。
  • 与 C, C++, 和 Java 进行互操作。

需要注意的是,本课程不包括安卓 应用 的 Rust 开发,那些安卓特有的部分是针对于安卓操作系统本身的代码编写。

非现阶段目标

Rust 是一个非常大的语言,我们不可能在几天内涵盖其所有内容。 本课程的一些非现阶段目标是:

假设

这门课程假设你已经知道如何编程。Rust 是一个静态类型语言,我们有时候会通过与 C 和 C++ 进行比较以更好地解释或对比 Rust 实现。

如果你知道如何使用动态类型语言(如 Python 或 Javascript)进行编程,那么你也可以很好地跟上。

这是一个 演讲者备注 示例。我们将用它们在幻灯片中添加额外的信息。这可能会是讲师应该涵盖的关键点和课堂上会出现的经典问题的答案。

课程实施

这一页是给课程讲师的。

这里有一些关于我们如何在 Google 内部进行课程的背景信息。

为了举办课程,你需要:

  1. 熟悉课程材料。我们在一些页面中包括了演讲者备注来帮助突出重点(请通过贡献更多演讲者备注来帮助我们!)。你应该要打开演讲者注解为一个弹出窗(点击 “Speaker Notes” 旁边的小箭头)。这样你就有了一个展现给课堂的干净的屏幕。

  2. 确定日期。由于这个课程很大,我们建议你将这四天安排在两周内。课程参与者表示在课程中有间隔时间是很有用的,因为这有助于他们处理我们提供的所有信息。

  3. 找一个足够大的房间供你的当面参与者使用。我们建议 15-20 人的课室规模。它足够小,这样人们可以舒适地问问题 — 也让讲师可以有时间回答这些问题。

  4. 上课当天,提前一点到房间布置。我们建议在你的笔记本使用 mdbook serve 直接进行演示。这样保证了最佳性能,在你切换页面时不会有延迟。使用你的笔记本也将允许你修复你或课程参与者发现的拼写错误。

  5. 让人们自己或在小组内解决练习题。询问人们是否被卡住了,或者你有什么可以帮助他们的。当你看到几个人都有相同的问题,在课堂上提出并提供一个解决方案,比如,向人们展示从何处查找标准库的相关信息。

  6. 如果你不跳过第 4 天安卓特有的部分,你将需要 AOSP checkout。在同一台机器检出一份 课程仓库 并移动到你的 AOSP 检出的根目录下的 src/android/ 下。这回确保 Android 构建系统在 src/android/ 内可以看到 Android.bp 文件。

    确保 adb sync 在你的模拟器或真实设备上正常工作,并使用 src/android/build_all.sh 预先编译所有的安卓示例。阅读脚本内运行的命令并确保你手动运行时可以正常工作。

就是这些,祝你课程顺利!我们希望你和我们一样享受它的乐趣!

请稍后提供反馈,以便我们继续改进课程。我们想知道什么对你很有用,什么可以做得更好。也非常欢迎你的学生向我们发送反馈

课程结构

这一页是给课程讲师的。

这门课程节奏很快,并涵盖了很多领域:

  • 第 1 天: Rust 基础、所有权和借用检查。
  • 第 2 天: 复合数据类型、模式匹配、标准库。
  • 第 3 天: Trait 和泛型、错误处理、测试、unsafe Rust。
  • 第 4 天: Rust 中的并发和与其它语言的互操作性

第 4 天的练习: 你在项目中是否面临一些我们可以尝试迁移到 Rust 的 C/C++ 代码?依赖项越少越好,解析代码将会是理想的选择。

形式

本课程旨在活跃互动,我们建议让问题推动对 Rust 的探索!

快捷键

mdBook 中有一些非常有用的快捷键:

  • 方向键-左: 前往前一个页面。
  • 方向键-右: 前往下一个页面。
  • Ctrl + Enter: 执行焦点处的代码示例。
  • s: 激活搜索栏。

使用 Cargo

当你开始阅读关于 Rust 的内容时,你很快会遇见 Cargo,Rust 生态中用于构建和运行 Rust 应用程序的标准工具。这里我们想要简要介绍 Cargo 是什么以及它如何适应广泛的生态和如何适配这个课程训练。

安装

Rustup (推荐)

你可以使用由 Rust 基金会维护的 rustup 工具按照说明安装 cargo 和 rust 编译器,以及其它的标准的周边工具。

Along with cargo and rustc, Rustup will install itself as a command line utility that you can use to install/switch toolchains, setup cross compilation, etc.

与 cargo 和 rustc 一起, Rustup 将会把自己安装为命令行工具,你可以用来安装/切换工具链,设置交叉编译,等等。

Debian

在 Debian/Ubuntu,你可以通过以下指令安装 Cargo 和 Rust 源码:

$ sudo apt install cargo rust-src

这让 rust-analyzer 可以跳转到定义。我们推荐使用 VS Code 来编辑代码(但是任何兼容LSP的编辑器都可以工作)。

有些人还喜欢使用 Jetbrains IDE家族,它们有自己的分析,也有自己的权衡。如果你更喜欢它们,你可以安装 Rust 插件。请注意,截至2023年1月,调试器仅在 Jetbrains IDEA 套件的 CLion 版本中可以工作。

Rust 生态

Rust 生态包含许多工具,主要是这些:

  • rustc:Rust 编译器将 .rs 转为二进制和其它中间格式1

  • cargo:Rust 依赖管理和构建工具。Cargo 知道如何下载位于 https://crates.io 的依赖并在你构建工程时传给 rustc。Cargo 还附带了一个内置的测试运行器,用于执行单元测试2

  • rustup:Rust 工具链安装器和升级器。这个工具用于安装和当新版本 Rust 释放时更新 rustccargo。此外,rustup 还能下载标准库的文档。你可以同时安装多个版本的 Rust,rustup 将允许你根据需要在它们之间切换。

要点:

  • Rust 有一个快速发布计划,每六周发布一个新版本。新版本保持对旧版本的向后兼容性 — 并启用新功能。

  • 有三个发布通道:“stable”、 “beta” 和 “nightly”。

  • 每六个星期,在 “nightly”, “beta” 中进行了测试的新功能将会成为 “stable”。

  • Rust 也有 版本:现在的版本是 Rust 2021。之前的版本是 Rust 2015 和 Rust 2018。

    • 每个版本可以允许对语言进行向后不兼容的更改。

    • 为了防止破坏代码,版本是可选的:你可以通过 Cargo.toml 为你的 crate 选择版本。

    • 为了避免分裂生态,Rust 编译器可以混合为不同版本编写的代码。

    • 请注意,不通过 cargo 直接使用编译器是非常罕见的(绝大部分用户都从不这样做)。

    • 可能值得一提的是,Cargo 本身就是一个非常强大和全面的工具。它具有很多高级功能,包括但不限于:

    • 通过 Cargo 官方文档 了解更多

本培训中的代码示例

对于本次培训,我们将主要通过我们可以在浏览器中执行的例子探索 Rust 语言。这使得起步更加容易,也确保每个人都有一致的体验。

仍然鼓励安装 Cargo:这将使你更容易完成练习。在最后一天,我们将做一个大练习,以向你展示如何使用依赖,这时候你需要 Cargo。

本课程中的代码块都是完全交互式的:

fn main() {
    println!("编辑我!");
}

当焦点处于文本框时,你可以使用 Ctrl + Enter 执行代码。

大部分的代码示例都像上面展示的那样可以编辑。一小部分示例由于各种原因不可编辑:

  • 嵌入的 playgrounds 无法执行单元测试。复制粘贴这些代码并在真正的 Playground 打开以证实单元测试。

  • 当你离开页面时,嵌入的 playgrounds 会丢失状态!这就是学生需要使用本地 Rust 安装或通过 Playground 解决练习的原因。

通过 Cargo 本地运行代码

如果你想要在你自己的系统上试验代码,首先你需要安装 Rust。请参照 Rust 程序设计语言中的说明。这应该会给你一个可以工作的 rustccargo。在编辑时,最新的 Rust 稳定版本有以下版本号:

% rustc --version
rustc 1.61.0 (fe5b13d68 2022-05-18)
% cargo --version
cargo 1.61.0 (a028ae4 2022-04-29)

完成后,请参照以下步骤,从这次培训中的一个例子构建出一个 Rust 二进制文件:

  1. 点击你想要复制的示例的 “Copy to clipboard” 按钮。

  2. 使用 cargo new exercise 为你的代码创建一个新的 exercise/ 目录:

    $ cargo new exercise
         Created binary (application) `exercise` package
    
  3. 前往 exercise/ 并使用 cargo run 构建和运行你的二进制文件:

    $ cd exercise
    $ cargo run
       Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
        Finished dev [unoptimized + debuginfo] target(s) in 0.75s
         Running `target/debug/exercise`
    Hello, world!
    
  4. 使用你自己的代码替换 src/main.rs 中的样板代码。比如,使用前一页中的示例代码,让 src/main.rs 看起来像

    fn main() {
        println!("编辑我!");
    }
  5. 使用 cargo run 构建并运行你新的二进制文件:

    $ cargo run
       Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
        Finished dev [unoptimized + debuginfo] target(s) in 0.24s
         Running `target/debug/exercise`
    编辑我!
    
  6. 使用 cargo check 快速检查你工程中的错误,使用 cargo build 编译而不运行它。你可以在 target/debug/ 中找到正常的 debug 版本编译输出。使用 cargo build --release 会在 target/release/ 构建产生一个优化的 release 版本。

  7. 你可以通过编辑 Cargo.toml 为你的工程添加依赖项。当你运行 cargo 命令时,它会自动为你下载并编译缺失的依赖项。

尝试鼓励课程参与者安装 Cargo 并使用一个本地编辑器。这将会使他们的生活更轻松,因为他们将会有一个正常的开发环境。

欢迎来到第 1 天

这是 Comprehensive Rust 的第一天。我们今天将涵盖很多方面:

  • 基础 Rust 语法:变量、标量和复合类型、枚举、结构体、引用、函数和方法。

  • 内存管理:堆和栈、手动内存管理、基于作用域的内存管理和垃圾回收。

  • 所有权:移动语义、复制和克隆、借用和生命周期。

请提醒学生:

  • 他们应该在想到问题时立即提问,而不是留到最后。
  • 课堂旨在互动,非常鼓励进行讨论!
    • 作为讲师,你应该尽量保持讨论的相关性,也就是说,保持关于 Rust 和其它语言如何实现的相关性。这很难找到平衡点,但是允许讨论可能会有错误,因为这不仅仅只是单向交流。
  • 问题有可能是我们之前的幻灯片提到的内容。
    • 这非常没问题!重复是学习的重要部分。请记住幻灯片只是一个支撑,你可以随意跳过它们。

第一天的想法是展现 刚好多 的 Rust 以便我们能够谈论著名的借用检查。Rust 内存处理是一个显著特性,我们应该立即向学生展示这一点。

如果你在课室进行教授,这会是一个执行时间表的好地方。我们建议将一天分为两部分(如下):

  • 上午:9:00 到 12:00,
  • 下午:13:00 到 16:00。

当然,你可以按照需要进行调整。请确保包含了休息时间,我们建议每小时都有一次休息!

Rust 是什么?

Rust 是一门新语言,2015年发布了1.0版本:

  • Rust 是一门静态编译语言,扮演如 C++ 那样的角色
    • rustc 使用 LLVM 作为后端。
  • Rust 支持很多平台和架构: * x86, ARM, WebAssembly, …
    • Linux, Mac, Windows, …
  • Rust 广泛用于设备:
    • 固件和引导加载程序,
    • 智能显示器,
    • 移动电话,
    • 桌面,
    • 服务器。

Rust 的区域与 C++ 相同:

  • 灵活性高。
  • 高度可控。
  • 可以缩小到非常受限的设备,比如移动电话。
  • 没有运行时和垃圾收集。
  • 在不牺牲性能的前提下,注重可靠性和安全性。

Hello World!

让我们进入最简单的 Rust 程序,一个经典的 Hello World 程序:

fn main() {
    println!("Hello 🌍!");
}

你看到的是:

  • 函数是由 fn 引入的。
  • 块由花括号分隔,就像 C 和 C++ 那样。
  • main 函数是程序的入口。
  • Rust 有干净的宏,println! 就是其中一个例子。
  • Rust 的字符串是 UTF-8 编码的,可以包含任何 Unicode 字符。

这页幻灯片试图让学生熟悉 Rust 代码。他们会在后续四天中看到非常多代码,因此我们从熟悉的小案例开始。

要点:

  • Rust 很像 C/C++/Java 传统中的其它语言。它是命令式(而不是函数式)的,并且它不会尝试造轮子,除非是确实需要。

  • Rust 是现代的,完全支持像 Unicode 之类的东西。

  • Rust 使用宏(而不是函数重载)来适配那些你想要使用不定数量参数的地方。

小示例

这里有一个 Rust 的小示例程序:

fn main() {              // 程序入口
    let mut x: i32 = 6;  // 可变的变量绑定
    print!("{x}");       // 用于打印的宏,就像 printf
    while x != 1 {       // 表达式周围没有括号
        if x % 2 == 0 {  // 像其他语言那样的数学运算
            x = x / 2;
        } else {
            x = 3 * x + 1;
        }
        print!(" -> {x}");
    }
    println!();
}

这个代码实现了 Collatz 猜想:人们相信循环将总是结束,但是这尚未得到证实。编辑代码并以不同输入值运行。

要点:

  • 解释所有的变量都是静态类型的。尝试移除 i32 来触发类型推导。尝试使用 i8 并触发一个运行时整数溢出。

  • 更改 let mut xlet x,讨论编译器错误。

  • 展示如果参数和格式化字符串不匹配时 print! 会如何给出编译错误。

  • 展示当你想要打印一个更复杂的表达式而不是单个变量时,你需要如何使用 {} 作为占位符。

  • 向学生展示标准库和如何搜索 std::fmt,它有着格式化相关的微型语言的规则。学生熟悉搜索标准库是非常重要的。

为什么使用 Rust?

一些 Rust 的独特卖点:

  • 编译器内存安全。
  • 缺少未定义的运行时行为。
  • 现代的语言特性。

询问学生他们有哪些语言的经验。基于回答你可以突出 Rust 的不同特点:

  • 有 C 或 C++ 经验:Rust 通过借用检查器排除了所有 运行期错误。你会获得像 C 和 C++ 那样的性能,但是不会有内存安全问题。此外,你还会获得一个现代化的语言,它有着模式匹配之类的结构和内建的依赖管理。

  • 有 Java, Go, Python, JavaScript… 经验:你会获得和其它语言一样的内存安全,以及熟悉的高级语言体验。此外,你还获得像 C 和 C++ 那样快速和可预测的性能(没有垃圾回收)和低级硬件的访问(如果需要的话)

编译期保证

编译期的静态内存管理:

  • 没有未初始化的变量。
  • 没有内存泄漏(几乎没有, 看备注)
  • 没有重复释放(double-frees)。
  • 没有释放后使用(use-after-free)。
  • 没有 NULL 指针。
  • 没有忘记锁定的互斥锁。
  • 没有线程间数据竞争。
  • 没有迭代器无效。

在 (safe) Rust 中产生内存泄漏是有可能的。比如:

  • 你可以使用 Box::leak 泄漏一个指针。这个可以获得一个运行时初始化和运行时确定大小的静态变量
  • 你可以使用 std::mem::forget 让编译期 “忘记” 一个值(意味着销毁器永远不会执行)。
  • 你还可能使用 RcArc 意外创建一个循环引用。* 事实上,有些人会认为无限填充集合也是内存泄漏,Rust 无法防止这些内存泄漏。

就本课程而言,“没有内存泄漏” 应理解为 “几乎没有意外的内存泄漏”

运行期保证

没有运行时未定义行为:

  • 数组访问是经过边界检查的。
  • 数字溢出是明确的。

要点:

  • 数字溢出通过一个编译期标识是可以明确的。可选项是要么 panic(一个可控的程序奔溃),要么是环绕。默认情况下,你会在 debug 模式(cargo build)获得 panic 并在 release 模式(cargo build --release)获得环绕。

  • 边界检查不能通过编译期标识取消。它也不能直接通过 unsafe 关键字取消。不过,unsafe 允许你调用如 slice::get_unchecked 这样的不做边界检查的函数。

现代化特性

Rust 是基于过去40年中获得的所有经验构建的。

语言特性

  • 枚举和模式匹配。
  • 泛型。
  • 无负担的 FFI。
  • 零成本抽象。

工具

  • 较好的编译器错误。
  • 集成依赖管理。
  • 集成测试支持。
  • 出色的 Language Server Protocol 支持。

要点:

  • 零成本抽象,类似于 C++,意味着你不需要’支付’使用高级语言指令的内存或 CPU 代价。比如,使用 for 编写一个循环应得到与使用 .iter().fold() 大致相同的低级指令。

  • 值得一提的是,Rust 的枚举是 ‘代数类型’,也被称为 ‘sum types’,它运行类型系统表达类型 Option<T>Result<T, E> 这样的内容。

  • 提醒人们阅读错误 — 很多开发者习惯于忽视冗长的编译器输出。Rust 的编译器比其它编译器更显著地啰嗦。它经常会给你提供可行的返回,准备好让你复制粘贴到你的代码中。

  • Rust 标准库相比像 Java、Python 和 Go 这样的语言非常小。Rust 没有一些你可能觉得是标准或核心的东西:

    • 一个随机数生成器,但是可以看 [rangd]。
    • SSL 或 TLS 支持,但是可以看 rusttls
    • JSON 支持,但是可以看 serde_json。 背后的原因是标准库的功能无法消失,因此它必须非常稳定。对于上面的举例,Rust 社区仍然在努力寻找最佳解决方案 — 但是对于这些事情,也许没有一个最佳的解决方案。

    Rust 附带了一个 Cargo 形式的内置的包管理器,这使得下载和编译第三方 crate 变得很简单。这样做的结果是标准库可以变得更小。

    发现好的第三方 crate 会成为一个难题。网站例如 https://lib.rs/ 通过让你可以对比 crate 的健康指标以找到一个好而可信任的 crate 来帮助你解决这个问题。* rust-analyzer 是一个良好支持 LSP 的实现,用于主流的 IDE 和文本编辑器。

基础语法

Rust 大多数的语法对你来说都很熟悉,就像 C 或 C++ 那样:

  • 块和作用域使用花括号分隔。
  • 行注释以 // 开头,块注释包含于 /* ... */
  • 关键字像 ifwhile 以同样的方式工作。
  • 通过 = 进行变量赋值,使用 == 进行比较。

标量类型

类型字面量
有符号整数i8, i16, i32, i64, i128, isize-10, 0, 1_000, 123i64
无符号整数u8, u16, u32, u64, u128, usize0, 123, 10u16
浮点数f32, f643.14, -10.0e20, 2f32
字符串&str"foo", r#"\\"#
Unicode 标量值char'a', 'α', '∞'
字节字符串&[u8]b"abc", br#" " "#
布尔booltrue, false

类型有如下宽度:

  • iNuNfNN 位宽,
  • isizeusize 是指针的宽度,
  • char 是 32 位宽度,
  • bool 是 8 位宽度。

复合类型

类型字面量
数组[T; N][20, 30, 40], [0; 3]
元组(), (T,), (T1, T2), …(), ('x',), ('x', 1.2), …

数组赋值和访问:

fn main() {
    let mut a: [i8; 10] = [42; 10];
    a[5] = 0;
    println!("a: {:?}", a);
}

元组赋值和访问:

fn main() {
    let t: (i8, bool) = (7, true);
    println!("1st index: {}", t.0);
    println!("2nd index: {}", t.1);
}

要点:

数组:

  • 数组有相同类型的元素,类型是 T,长度是 N,这是一个编译期常量。注意数组的长度是其类型的一部分,也就是说 [u8; 3][u8; 4] 被视为两种不同的类型。

  • 我们可以使用字面量给一个数组赋值。

  • 在 main 函数中,print 语句使用 ? 格式参数请求 debug 实现:{} 给出默认输出,{:?} 给出 debug 输出。我们也可以用 {a}{a:?} 而不用在格式化字符串后面指定值。

  • 添加 #,比如 {a:#?},会调用 “漂亮的打印” 格式,这样更容易阅读。

元组:

  • 和数组一样,元组有一个固定长度。

  • 元组将不同类型的值组合为一个复合类型。

  • 元组的字段可以通过句点和值的索引访问,比如 t.0, t.1

  • 空元组 () 也被叫做 “单元类型”,它既是一个类型,也是这个类型唯一有效的值 - 也就是说它的类型和值都使用 () 表示,它常被用于,比如,表示一个函数或表达式没有返回值,我们会在后面的幻灯片看到这个。

    • 你可以把它当作其它语言的 void,这会让你觉得很熟悉。

引用

像 C++ 那样,Rust 有引用:

fn main() {
    let mut x: i32 = 10;
    let ref_x: &mut i32 = &mut x;
    *ref_x = 20;
    println!("x: {x}");
}

一些注意事项:

  • 当赋值时,我们必须解引用 ref_x,类似于 C 和 C++ 的指针。
  • Rust 在某些情况下会自动解引用,特别是当调用方法时(试试 ref_x.count_ones())。
  • 被声明为 mut 的引用在其生命周期内可以被绑定到不同的值。
要点:
  • 请注意 let mut ref_x: &i32let ref_x: &mut i32 之间的区别。第一个表示一个可变引用,它可以绑定到不同的值,而第二个表示引用一个可变值。

垂悬引用

Rust 将静态禁止垂悬引用:

fn main() {
    let ref_x: &i32;
    {
        let x: i32 = 10;
        ref_x = &x;
    }
    println!("ref_x: {ref_x}");
}
  • 一个引用被称为“借用”其引用的值。
  • Rust 跟踪所有引用的生命周期,以确保它们活得足够久。
  • 当我们讲到所有权时,会讨论更多关于借用的内容。

切片

切片给你一个大集合的一个视图:

fn main() {
    let a: [i32; 6] = [10, 20, 30, 40, 50, 60];
    println!("a: {a:?}");

    let s: &[i32] = &a[2..4];
    println!("s: {s:?}");
}
  • 切片从原类型中借用数据。
  • 问题:如果你修改 a[3] 会发生什么?
  • 我们通过借用 a 并在括号中指定起始和结束的索引来创建切片。

  • 如果切片由索引0开始,Rust 的 range 语法允许我们不写起始索引,也就是说 &a[0..a.len()]&a[..a.len()] 是完全一致的。

  • 对于结束索引也一样,所以 &a[2..a.len()]&a[2..] 是一样的。

  • 为了方便地创建完整数组的切片,我们可以使用 &a[..]

  • s 是一个 i32 类型切片的引用。注意 s 的类型(&[i32])不再提及数组的长度。这允许我们在不同长度的切片上执行计算。

  • 切片总是从别的对象借用而来。在这个例子中,a 必须保持 ‘存活’(在作用域)到至少要与我们的切片一样久。

  • 关于修改 a[3] 的问题能引发一个有趣的讨论,而答案是,处于内存安全考虑,当你创建一个切片后,你不能通过 a 进行修改,但是 as 都可以让你安全地读取数据。更多细节会在借用检查器章节说明。

String vs str

我们现在可以理解 Rust 中的两种字符串类型:

fn main() {
    let s1: &str = "World";
    println!("s1: {s1}");

    let mut s2: String = String::from("Hello ");
    println!("s2: {s2}");
    s2.push_str(s1);
    println!("s2: {s2}");
    
    let s3: &str = &s2[6..];
    println!("s3: {s3}");
}

Rust 术语:

  • &str 一个字符串切片的不可变引用。
  • String 一个可变的字符串缓冲区。
  • &str 表示一个字符串切片,它是一个指向存在内存块中的 UTF-8 编码的字符串数据的不可变引用。字符串字面量 (如 ”Hello”),都保存在程序的二进制文件内。

  • Rust 的 String 类型是一个 bytes 类型 vector 的封装。和 Vec<T> 一样,它是有所有权的。

  • 与许多其它类型一样,String::from() 从字符串字面量创建一个字符串;String::new() 创建一个字符串,它可以使用 push()push_str() 方法添加字符串数据。

  • format!() 宏是一种从不定值创建自有所有权的字符串的方便方法。它接受与 println!() 相同的格式化字符串。

  • 你可以通过 & 和随意的范围选择从 String 借用出一个 &str 切片。

  • 对于 C++ 程序员:把 &str 想象为 C++ 中的 const char*,但是它总是指向内存中的有效字符。Rust 的 String 可以粗略看作 C++ 中的std::string (主要区别:它只能包含 UTF-8 编码的字节,并且不会使用 small-string 优化)。

函数

一个 Rust 版本的著名面试问题 FizzBuzz

fn main() {
    fizzbuzz_to(20);   // 在下面定义了,不需要预先定义
}

fn is_divisible_by(lhs: u32, rhs: u32) -> bool {
    if rhs == 0 {
        return false;  // 特例,提前返回
    }
    lhs % rhs == 0     // 代码块的最后一个表达式即返回值value
}

fn fizzbuzz(n: u32) -> () {  // 没有返回值表示返回单元类型 `()`
    match (is_divisible_by(n, 3), is_divisible_by(n, 5)) {
        (true,  true)  => println!("fizzbuzz"),
        (true,  false) => println!("fizz"),
        (false, true)  => println!("buzz"),
        (false, false) => println!("{n}"),
    }
}

fn fizzbuzz_to(n: u32) {  // `-> ()` 通常被省略
    for i in 1..=n {
        fizzbuzz(i);
    }
}
  • 我们在 main 中提到一个下面写的函数。既不需要预先声明,也不需要头文件。

  • 声明的参数后跟一个类型(有些编程语言是相反的),然后是一个返回值类型。

  • 函数体(或任何代码块)的最后一个表达式会成为返回值。简单地省略表达式结尾的 ;

  • fizzbuzz_to() 里的 for 循环的范围表达式包含 =n,这让它包含了上边界。

  • fizzbuzz() 里的 match 表达式做了很多工作。下面会展开以展示发生了什么。

    (为了更清晰,添加了类型标注,但是可以省略。)

    let by_3: bool = is_divisible_by(n, 3);
    let by_5: bool = is_divisible_by(n, 5);
    let by_35: (bool, bool) = (by_3, by_5);
    match by_35 {
      // ...

方法

Rust 有方法,它们是只与特定类型相关联的函数。方法的第一个参数是它关联的类型的实例:

struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }

    fn inc_width(&mut self, delta: u32) {
        self.width += delta;
    }
}

fn main() {
    let mut rect = Rectangle { width: 10, height: 5 };
    println!("old area: {}", rect.area());
    rect.inc_width(5);
    println!("new area: {}", rect.area());
}
  • 我们会在今天的练习和明天的课程中看到更多关于方法的内容。

函数重载

不支持重载:

  • 每个函数都有单个实现:
    • 总是接受固定数量的参数。
    • 总是使用同样的一组参数类型。
  • 不支持默认值:
    • 所有的调用都有同样数量的实参。
    • 有时会使用宏作为替代。

不过,函数参数可以是泛型:

fn pick_one<T>(a: T, b: T) -> T {
    if std::process::id() % 2 == 0 { a } else { b }
}

fn main() {
    println!("coin toss: {}", pick_one("heads", "tails"));
    println!("cash prize: {}", pick_one(500, 1000));
}
  • 当使用泛型时,标准库的 Into<T> 可以在参数类型上提供一种有限的多态。我们会在后面的章节看到更多细节。

第 1 天: 上午练习

在这些练习中,我们将探索 Rust 的两个部分:

  • 类型的隐式转换。

  • 数组与 for 循环。

解决问题时应该考虑的一些事情:

  • 如果可能的话,使用一个本地安装的 Rust。这样你可以在你的编辑器中进行自动编译。在 使用 Cargo 查看关于安装 Rust 的细节。

  • 不然,使用 Rust Playground。

出于以下考虑,代码片段是不可编辑的:嵌入的代码片段会在你离开页面时丢失状态。

在看完练习后,你可以看看提供的解决方案

隐式转换

Rust 不会在类型间自动应用 隐式转型不像 C++)。你可以在类似这样的程序中看到这一点:

fn multiply(x: i16, y: i16) -> i16 {
    x * y
}

fn main() {
    let x: i8 = 15;
    let y: i16 = 1000;

    println!("{x} * {y} = {}", multiply(x, y));
}

Rust 的整数类型都实现了 From<T>Into<T> trait,让我们可以进行转换。From<T> trait 只有一个 from() 方法,类似地,Into<T> trait 也只有一个方法 into()。一个类型通过实现这些 trait 表达它如何转换为另外一种类型。

标准库有一个 From<i8> for i16 实现,这意味着我们可以通过调用 i16::from(x),将一个 i8 类型的变量 x 转换为一个 i16 类型变量。或者,更简单地,使用 x.into(),因为 From<i8> for i16 实现会自动创建一个 Into<i16> for i8 实现。

这同样适用于你自己类型的 From 实现,因此仅实现 From 即可自动获得相应的 Into 实现。

  1. 执行上面的程序并查看编译器错误。

  2. 更新上面的代码,使用 into() 来做转换。

  3. 更改 xy 为其它类型(比如 f32, bool, i128)来看看你可以将什么类型转为哪些其它类型。尝试将小类型转换为大类型,然后反过来试试。查看标准库文档来看看 From<T> 是否在你检查的类型对之间有实现。

数组和 for 循环

我们看到数组可以像这样进行声明:

#![allow(unused)]
fn main() {
let array = [10, 20, 30];
}

你可以通过使用 {:?} 请求它的 debug 表示来打印这样一个数组:

fn main() {
    let array = [10, 20, 30];
    println!("array: {array:?}");
}

Rust 让你可以使用 for 关键字在类似数组和 range 这样的东西上进行迭代:

fn main() {
    let array = [10, 20, 30];
    print!("Iterating over array:");
    for n in array {
        print!(" {n}");
    }
    println!();

    print!("Iterating over range:");
    for i in 0..3 {
        print!(" {}", array[i]);
    }
    println!();
}

使用上面的知识写一个函数 pretty_print 漂亮地打印一个矩阵,以及一个函数 transpose 进行矩阵转换(将行转换为列):

2584567⎤8⎥9⎦transpose==1473⎤6⎥9⎦123

将函数都硬编码为操作 3 × 3 的矩阵

复制下面的代码到 https://play.rust-lang.org/ 并实现函数:

// TODO: 当你完成实现后删除这个东西
#![allow(unused_variables, dead_code)]

fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
    unimplemented!()
}

fn pretty_print(matrix: &[[i32; 3]; 3]) {
    unimplemented!()
}

fn main() {
    let matrix = [
        [101, 102, 103], // <-- the comment makes rustfmt add a newline
        [201, 202, 203],
        [301, 302, 303],
    ];

    println!("matrix:");
    pretty_print(&matrix);

    let transposed = transpose(matrix);
    println!("transposed:");
    pretty_print(&transposed);
}

附加题

你可以使用 &[i32] 切片而不是硬编码的 3 × 3 矩阵作为你的参数和返回值类型吗?像 &[&[i32]] 这样的用于二维切片-的-切片的。为什么或为什么不?

查看 ndarray crate,一个生产级别质量的实现。

附加题的解决方案和答案在解决方案章节。

Variables

Rust provides type safety via static typing. Variable bindings are immutable by default:

fn main() {
    let x: i32 = 10;
    println!("x: {x}");
    // x = 20;
    // println!("x: {x}");
}
  • Due to type inference the i32 is optional. We will gradually show the types less and less as the type progresses.
  • Note that since println! is a macro, x is not moved, even using the function like syntax of println!("x: {}", x)

Type Inference

Rust will look at how the variable is used to determine the type:

fn takes_u32(x: u32) {
    println!("u32: {x}");
}

fn takes_i8(y: i8) {
    println!("i8: {y}");
}

fn main() {
    let x = 10;
    let y = 20;

    takes_u32(x);
    takes_i8(y);
    // takes_u32(y);
}

This slide demonstrates how the Rust compiler infers types based on constraints given by variable declarations and usages.

It is very important to emphasize that variables declared like this are not of some sort of dynamic “any type” that can hold any data. The machine code generated by such declaration is identical to the explicit declaration of a type. The compiler does the job for us and helps us to write a more concise code.

The following code tells the compiler to copy into a certain generic container without the code ever explicitly specifying the contained type, using _ as a placeholder:

fn main() {
    let mut v = Vec::new();
    v.push((10, false));
    v.push((20, true));
    println!("v: {v:?}");

    let vv = v.iter().collect::<std::collections::HashSet<_>>();
    println!("vv: {vv:?}");
}

collect relies on FromIterator, which HashSet implements.

Static and Constant Variables

Global state is managed with static and constant variables.

const

You can declare compile-time constants:

const DIGEST_SIZE: usize = 3;
const ZERO: Option<u8> = Some(42);

fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {
    let mut digest = [ZERO.unwrap_or(0); DIGEST_SIZE];
    for (idx, &b) in text.as_bytes().iter().enumerate() {
        digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE].wrapping_add(b);
    }
    digest
}

fn main() {
    let digest = compute_digest("Hello");
    println!("Digest: {digest:?}");
}

According the the Rust RFC Book these are inlined upon use.

static

You can also declare static variables:

static BANNER: &str = "Welcome to RustOS 3.14";

fn main() {
    println!("{BANNER}");
}

As noted in the Rust RFC Book, these are not inlined upon use and have an actual associated memory location. This is useful for unsafe and embedded code, and the variable lives through the entirety of the program execution.

We will look at mutating static data in the chapter on Unsafe Rust.

  • Mention that const behaves semantically similar to C++’s constexpr.
  • static, on the other hand, is much more similar to a const or mutable global variable in C++.
  • It isn’t super common that one would need a runtime evaluated constant, but it is helpful and safer than using a static.

Scopes and Shadowing

You can shadow variables, both those from outer scopes and variables from the same scope:

fn main() {
    let a = 10;
    println!("before: {a}");

    {
        let a = "hello";
        println!("inner scope: {a}");

        let a = true;
        println!("shadowed in inner scope: {a}");
    }

    println!("after: {a}");
}
  • Definition: Shadowing is different from mutation, because after shadowing both variable’s memory locations exist at the same time. Both are available under the same name, depending where you use it in the code.
  • A shadowing variable can have a different type.
  • Shadowing looks obscure at first, but is convenient for holding on to values after .unwrap().
  • The following code demonstrates why the compiler can’t simply reuse memory locations when shadowing an immutable variable in a scope, even if the type does not change.
fn main() {
    let a = 1;
    let b = &a;
    let a = a + 1;
    println!("{a} {b}");
}

Memory Management

Traditionally, languages have fallen into two broad categories:

  • Full control via manual memory management: C, C++, Pascal, …
  • Full safety via automatic memory management at runtime: Java, Python, Go, Haskell, …

Rust offers a new mix:

Full control and safety via compile time enforcement of correct memory management.

It does this with an explicit ownership concept.

First, let’s refresh how memory management works.

The Stack vs The Heap

  • Stack: Continuous area of memory for local variables.

    • Values have fixed sizes known at compile time.
    • Extremely fast: just move a stack pointer.
    • Easy to manage: follows function calls.
    • Great memory locality.
  • Heap: Storage of values outside of function calls.

    • Values have dynamic sizes determined at runtime.
    • Slightly slower than the stack: some book-keeping needed.
    • No guarantee of memory locality.

Stack Memory

Creating a String puts fixed-sized data on the stack and dynamically sized data on the heap:

fn main() {
    let s1 = String::from("Hello");
}
StackHeaps1ptrHellolen5capacity5
  • Mention that a String is backed by a Vec, so it has a capacity and length and can grow if mutable via reallocation on the heap.

  • If students ask about it, you can mention that the underlying memory is heap allocated using the System Allocator and custom allocators can be implemented using the Allocator API

Manual Memory Management

You allocate and deallocate heap memory yourself.

If not done with care, this can lead to crashes, bugs, security vulnerabilities, and memory leaks.

C Example

You must call free on every pointer you allocate with malloc:

void foo(size_t n) {
    int* int_array = (int*)malloc(n * sizeof(int));
    //
    // ... lots of code
    //
    free(int_array);
}

Memory is leaked if the function returns early between malloc and free: the pointer is lost and we cannot deallocate the memory.

Scope-Based Memory Management

Constructors and destructors let you hook into the lifetime of an object.

By wrapping a pointer in an object, you can free memory when the object is destroyed. The compiler guarantees that this happens, even if an exception is raised.

This is often called resource acquisition is initialization (RAII) and gives you smart pointers.

C++ Example

void say_hello(std::unique_ptr<Person> person) {
  std::cout << "Hello " << person->name << std::endl;
}
  • The std::unique_ptr object is allocated on the stack, and points to memory allocated on the heap.
  • At the end of say_hello, the std::unique_ptr destructor will run.
  • The destructor frees the Person object it points to.

Special move constructors are used when passing ownership to a function:

std::unique_ptr<Person> person = find_person("Carla");
say_hello(std::move(person));

Automatic Memory Management

An alternative to manual and scope-based memory management is automatic memory management:

  • The programmer never allocates or deallocates memory explicitly.
  • A garbage collector finds unused memory and deallocates it for the programmer.

Java Example

The person object is not deallocated after sayHello returns:

void sayHello(Person person) {
  System.out.println("Hello " + person.getName());
}

Memory Management in Rust

Memory management in Rust is a mix:

  • Safe and correct like Java, but without a garbage collector.
  • Depending on which abstraction (or combination of abstractions) you choose, can be a single unique pointer, reference counted, or atomically reference counted.
  • Scope-based like C++, but the compiler enforces full adherence.
  • A Rust user can choose the right abstraction for the situation, some even have no cost at runtime like C.

It achieves this by modeling ownership explicitly.

  • If asked how at this point, you can mention that in Rust this is usually handled by RAII wrapper types such as Box, Vec, Rc, or Arc. These encapsulate ownership and memory allocation via various means, and prevent the potential errors in C.

  • You may be asked about destructors here, the Drop trait is the Rust equivalent.

Comparison

Here is a rough comparison of the memory management techniques.

Pros of Different Memory Management Techniques

  • Manual like C:
    • No runtime overhead.
  • Automatic like Java:
    • Fully automatic.
    • Safe and correct.
  • Scope-based like C++:
    • Partially automatic.
    • No runtime overhead.
  • Compiler-enforced scope-based like Rust:
    • Enforced by compiler.
    • No runtime overhead.
    • Safe and correct.

Cons of Different Memory Management Techniques

  • Manual like C:
    • Use-after-free.
    • Double-frees.
    • Memory leaks.
  • Automatic like Java:
    • Garbage collection pauses.
    • Destructor delays.
  • Scope-based like C++:
    • Complex, opt-in by programmer.
    • Potential for use-after-free.
  • Compiler-enforced and scope-based like Rust:
    • Some upfront complexity.
    • Can reject valid programs.

Ownership

All variable bindings have a scope where they are valid and it is an error to use a variable outside its scope:

struct Point(i32, i32);

fn main() {
    {
        let p = Point(3, 4);
        println!("x: {}", p.0);
    }
    println!("y: {}", p.1);
}
  • At the end of the scope, the variable is dropped and the data is freed.
  • A destructor can run here to free up resources.
  • We say that the variable owns the value.

Move Semantics

An assignment will transfer ownership between variables:

fn main() {
    let s1: String = String::from("Hello!");
    let s2: String = s1;
    println!("s2: {s2}");
    // println!("s1: {s1}");
}
  • The assignment of s1 to s2 transfers ownership.
  • The data was moved from s1 and s1 is no longer accessible.
  • When s1 goes out of scope, nothing happens: it has no ownership.
  • When s2 goes out of scope, the string data is freed.
  • There is always exactly one variable binding which owns a value.
  • Mention that this is the opposite of the defaults in C++, which copies by value unless you use std::move (and the move constructor is defined!).

  • In Rust, you clones are explicit (by using clone).

Moved Strings in Rust

fn main() {
    let s1: String = String::from("Rust");
    let s2: String = s1;
}
  • The heap data from s1 is reused for s2.
  • When s1 goes out of scope, nothing happens (it has been moved from).

Before move to s2:

StackHeaps1ptrRustlen4capacity4

After move to s2:

StackHeaps1ptrRustlen4capacity4s2ptrlen4capacity4(inaccessible)

Double Frees in Modern C++

Modern C++ solves this differently:

std::string s1 = "Cpp";
std::string s2 = s1;  // Duplicate the data in s1.
  • The heap data from s1 is duplicated and s2 gets its own independent copy.
  • When s1 and s2 go out of scope, they each free their own memory.

Before copy-assignment:

StackHeaps1ptrCpplen3capacity3

After copy-assignment:

StackHeaps1ptrCpplen3capacity3s2ptrCpplen3capacity3

Moves in Function Calls

When you pass a value to a function, the value is assigned to the function parameter. This transfers ownership:

fn say_hello(name: String) {
    println!("Hello {name}")
}

fn main() {
    let name = String::from("Alice");
    say_hello(name);
    // say_hello(name);
}
  • With the first call to say_hello, main gives up ownership of name. Afterwards, name cannot be used anymore within main.
  • The heap memory allocated for name will be freed at the end of the say_hello function.
  • main can retain ownership if it passes name as a reference (&name) and if say_hello accepts a reference as a parameter.
  • Alternatively, main can pass a clone of name in the first call (name.clone()).
  • Rust makes it harder than C++ to inadvertently create copies by making move semantics the default, and by forcing programmers to make clones explicit.

Copying and Cloning

While move semantics are the default, certain types are copied by default:

fn main() {
    let x = 42;
    let y = x;
    println!("x: {x}");
    println!("y: {y}");
}

These types implement the Copy trait.

You can opt-in your own types to use copy semantics:

#[derive(Copy, Clone, Debug)]
struct Point(i32, i32);

fn main() {
    let p1 = Point(3, 4);
    let p2 = p1;
    println!("p1: {p1:?}");
    println!("p2: {p2:?}");
}
  • After the assignment, both p1 and p2 own their own data.
  • We can also use p1.clone() to explicitly copy the data.

Copying and cloning are not the same thing:

  • Copying refers to bitwise copies of memory regions and does not work on arbitrary objects.
  • Copying does not allow for custom logic (unlike copy constructors in C++).
  • Cloning is a more general operation and also allows for custom behavior by implementing the Clone trait.
  • Copying does not work on types that implement the Drop trait.

In the above example, try the following:

  • Add a String field to struct Point. It will not compile because String is not a Copy type.
  • Remove Copy from the derive attribute. The compiler error is now in the println! for p1.
  • Show that it works if you clone p1 instead.

If students ask about derive, it is sufficient to say that this is a way to generate code in Rust at compile time. In this case the default implementations of Copy and Clone traits are generated.

Borrowing

Instead of transferring ownership when calling a function, you can let a function borrow the value:

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
    Point(p1.0 + p2.0, p1.1 + p2.1)
}

fn main() {
    let p1 = Point(3, 4);
    let p2 = Point(10, 20);
    let p3 = add(&p1, &p2);
    println!("{p1:?} + {p2:?} = {p3:?}");
}
  • The add function borrows two points and returns a new point.
  • The caller retains ownership of the inputs.

Notes on stack returns:

  • Demonstrate that the return from add is cheap because the compiler can eliminate the copy operation. Change the above code to print stack addresses and run it on the Playground. In the “DEBUG” optimization level, the addresses should change, while the stay the same when changing to the “RELEASE” setting:

    #[derive(Debug)]
    struct Point(i32, i32);
    
    fn add(p1: &Point, p2: &Point) -> Point {
        let p = Point(p1.0 + p2.0, p1.1 + p2.1);
        println!("&p.0: {:p}", &p.0);
        p
    }
    
    fn main() {
        let p1 = Point(3, 4);
        let p2 = Point(10, 20);
        let p3 = add(&p1, &p2);
        println!("&p3.0: {:p}", &p3.0);
        println!("{p1:?} + {p2:?} = {p3:?}");
    }
  • The Rust compiler can do return value optimization (RVO).

  • In C++, copy elision has to be defined in the language specification because constructors can have side effects. In Rust, this is not an issue at all. If RVO did not happen, Rust will always performs a simple and efficient memcpy copy.

Shared and Unique Borrows

Rust puts constraints on the ways you can borrow values:

  • You can have one or more &T values at any given time, or
  • You can have exactly one &mut T value.
fn main() {
    let mut a: i32 = 10;
    let b: &i32 = &a;

    {
        let c: &mut i32 = &mut a;
        *c = 20;
    }

    println!("a: {a}");
    println!("b: {b}");
}
  • The above code does not compile because a is borrowed as mutable (through c) and as immutable (through b) at the same time.
  • Move the println! statement for b before the scope that introduces c to make the code compile.
  • After that change, the compiler realizes that b is only ever used before the new mutable borrow of a through c. This is a feature of the borrow checker called “non-lexical lifetimes”.

Lifetimes

A borrowed value has a lifetime:

  • The lifetime can be elided: add(p1: &Point, p2: &Point) -> Point.
  • Lifetimes can also be explicit: &'a Point, &'document str.
  • Read &'a Point as “a borrowed Point which is valid for at least the lifetime a”.
  • Lifetimes are always inferred by the compiler: you cannot assign a lifetime yourself.
    • Lifetime annotations create constraints; the compiler verifies that there is a valid solution.

Lifetimes in Function Calls

In addition to borrowing its arguments, a function can return a borrowed value:

#[derive(Debug)]
struct Point(i32, i32);

fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
    if p1.0 < p2.0 { p1 } else { p2 }
}

fn main() {
    let p1: Point = Point(10, 10);
    let p2: Point = Point(20, 20);
    let p3: &Point = left_most(&p1, &p2);
    println!("left-most point: {:?}", p3);
}
  • 'a is a generic parameter, it is inferred by the compiler.
  • Lifetimes start with ' and 'a is a typical default name.
  • Read &'a Point as “a borrowed Point which is valid for at least the lifetime a”.
    • The at least part is important when parameters are in different scopes.

In the above example, try the following:

  • Move the declaration of p2 and p3 into a a new scope ({ ... }), resulting in the following code:

    #[derive(Debug)]
    struct Point(i32, i32);
    
    fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
        if p1.0 < p2.0 { p1 } else { p2 }
    }
    
    fn main() {
        let p1: Point = Point(10, 10);
        let p3: &Point;
        {
            let p2: Point = Point(20, 20);
            p3 = left_most(&p1, &p2);
        }
        println!("left-most point: {:?}", p3);
    }

    Note how this does not compile since p3 outlives p2.

  • Reset the workspace and change the function signature to fn left_most<'a, 'b>(p1: &'a Point, p2: &'a Point) -> &'b Point. This will not compile because the relationship between the lifetimes 'a and 'b is unclear.

  • Another way to explain it:

    • Two references to two values are borrowed by a function and the function returns another reference.
    • It must have come from one of those two inputs (or from a global variable).
    • Which one is it? The compiler needs to to know, so at the call site the returned reference is not used for longer than a variable from where the reference came from.

Lifetimes in Data Structures

If a data type stores borrowed data, it must be annotated with a lifetime:

#[derive(Debug)]
struct Highlight<'doc>(&'doc str);

fn erase(text: String) {
    println!("Bye {text}!");
}

fn main() {
    let text = String::from("The quick brown fox jumps over the lazy dog.");
    let fox = Highlight(&text[4..19]);
    let dog = Highlight(&text[35..43]);
    // erase(text);
    println!("{fox:?}");
    println!("{dog:?}");
}
  • In the above example, the annotation on Highlight enforces that the data underlying the contained &str lives at least as long as any instance of Highlight that uses that data.
  • If text is consumed before the end of the lifetime of fox (or dog), the borrow checker throws an error.
  • Types with borrowed data force users to hold on to the original data. This can be useful for creating lightweight views, but it generally makes them somewhat harder to use.
  • When possible, make data structures own their data directly.
  • Some structs with multiple references inside can have more than one lifetime annotation. This can be necessary if there is a need to describe lifetime relationships between the references themselves, in addition to the lifetime of the struct itself. Those are very advanced use cases.

Day 1: Afternoon Exercises

We will look at two things:

  • A small book library,

  • Iterators and ownership (hard).

在看完练习后,你可以看看提供的[解决方案]。

Designing a Library

We will learn much more about structs and the Vec<T> type tomorrow. For now, you just need to know part of its API:

fn main() {
    let mut vec = vec![10, 20];
    vec.push(30);
    println!("middle value: {}", vec[vec.len() / 2]);
    for item in vec.iter() {
        println!("item: {item}");
    }
}

Use this to create a library application. Copy the code below to https://play.rust-lang.org/ and update the types to make it compile:

// TODO: 当你完成实现后删除这个东西
#![allow(unused_variables, dead_code)]

struct Library {
    books: Vec<Book>,
}

struct Book {
    title: String,
    year: u16,
}

impl Book {
    // This is a constructor, used below.
    fn new(title: &str, year: u16) -> Book {
        Book {
            title: String::from(title),
            year,
        }
    }
}

// This makes it possible to print Book values with {}.
impl std::fmt::Display for Book {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{} ({})", self.title, self.year)
    }
}

impl Library {
    fn new() -> Library {
        unimplemented!()
    }

    //fn len(self) -> usize {
    //    unimplemented!()
    //}

    //fn is_empty(self) -> bool {
    //    unimplemented!()
    //}

    //fn add_book(self, book: Book) {
    //    unimplemented!()
    //}

    //fn print_books(self) {
    //    unimplemented!()
    //}

    //fn oldest_book(self) -> Option<&Book> {
    //    unimplemented!()
    //}
}

// This shows the desired behavior. Uncomment the code below and
// implement the missing methods. You will need to update the
// method signatures, including the "self" parameter! You may
// also need to update the variable bindings within main.
fn main() {
    let library = Library::new();

    //println!("Our library is empty: {}", library.is_empty());
    //
    //library.add_book(Book::new("Lord of the Rings", 1954));
    //library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
    //
    //library.print_books();
    //
    //match library.oldest_book() {
    //    Some(book) => println!("My oldest book is {book}"),
    //    None => println!("My library is empty!"),
    //}
    //
    //println!("Our library has {} books", library.len());
}

Solution

Iterators and Ownership

The ownership model of Rust affects many APIs. An example of this is the Iterator and IntoIterator traits.

Iterator

Traits are like interfaces: they describe behavior (methods) for a type. The Iterator trait simply says that you can call next until you get None back:

#![allow(unused)]
fn main() {
pub trait Iterator {
    type Item;
    fn next(&mut self) -> Option<Self::Item>;
}
}

You use this trait like this:

fn main() {
    let v: Vec<i8> = vec![10, 20, 30];
    let mut iter = v.iter();

    println!("v[0]: {:?}", iter.next());
    println!("v[1]: {:?}", iter.next());
    println!("v[2]: {:?}", iter.next());
    println!("No more items: {:?}", iter.next());
}

What is the type returned by the iterator? Test your answer here:

fn main() {
    let v: Vec<i8> = vec![10, 20, 30];
    let mut iter = v.iter();

    let v0: Option<..> = iter.next();
    println!("v0: {v0:?}");
}

Why is this type used?

IntoIterator

The Iterator trait tells you how to iterate once you have created an iterator. The related trait IntoIterator tells you how to create the iterator:

#![allow(unused)]
fn main() {
pub trait IntoIterator {
    type Item;
    type IntoIter: Iterator<Item = Self::Item>;

    fn into_iter(self) -> Self::IntoIter;
}
}

The syntax here means that every implementation of IntoIterator must declare two types:

  • Item: the type we iterate over, such as i8,
  • IntoIter: the Iterator type returned by the into_iter method.

Note that IntoIter and Item are linked: the iterator must have the same Item type, which means that it returns Option<Item>

Like before, what is the type returned by the iterator?

fn main() {
    let v: Vec<String> = vec![String::from("foo"), String::from("bar")];
    let mut iter = v.into_iter();

    let v0: Option<..> = iter.next();
    println!("v0: {v0:?}");
}

for Loops

Now that we know both Iterator and IntoIterator, we can build for loops. They call into_iter() on an expression and iterates over the resulting iterator:

fn main() {
    let v: Vec<String> = vec![String::from("foo"), String::from("bar")];

    for word in &v {
        println!("word: {word}");
    }

    for word in v {
        println!("word: {word}");
    }
}

What is the type of word in each loop?

Experiment with the code above and then consult the documentation for impl IntoIterator for &Vec<T> and impl IntoIterator for Vec<T> to check your answers.

Welcome to Day 2

Now that we have seen a fair amount of Rust, we will continue with:

  • Structs, enums, methods.

  • Pattern matching: destructuring enums, structs, and arrays.

  • Control flow constructs: if, if let, while, while let, break, and continue.

  • The Standard Library: String, Option and Result, Vec, HashMap, Rc and Arc.

  • Modules: visibility, paths, and filesystem hierarchy.

Structs

Like C and C++, Rust has support for custom structs:

struct Person {
    name: String,
    age: u8,
}

fn main() {
    let mut peter = Person {
        name: String::from("Peter"),
        age: 27,
    };
    println!("{} is {} years old", peter.name, peter.age);
    
    peter.age = 28;
    println!("{} is {} years old", peter.name, peter.age);
    
    let jackie = Person {
        name: String::from("Jackie"),
        ..peter
    };
    println!("{} is {} years old", jackie.name, jackie.age);
}
Key Points:
  • Structs work like in C or C++.
    • Like in C++, and unlike in C, no typedef is needed to define a type.
    • Unlike in C++, there is no inheritance between structs.
  • Methods are defined in an impl block, which we will see in following slides.
  • This may be a good time to let people know there are different types of structs.
    • Zero-sized structs e.g., struct Foo; might be used when implementing a trait on some type but don’t have any data that you want to store in the value itself.
    • The next slide will introduce Tuple structs.

Tuple Structs

If the field names are unimportant, you can use a tuple struct:

struct Point(i32, i32);

fn main() {
    let p = Point(17, 23);
    println!("({}, {})", p.0, p.1);
}

This is often used for single-field wrappers (called newtypes):

struct PoundOfForce(f64);
struct Newtons(f64);

fn compute_thruster_force() -> PoundOfForce {
    todo!("Ask a rocket scientist at NASA")
}

fn set_thruster_force(force: Newtons) {
    // ...
}

fn main() {
    let force = compute_thruster_force();
    set_thruster_force(force);
}

Newtypes are a great way to encode additional information about the value in a primitive type, for example:

  • The number is measured in some units: Newtons in the example above.
  • The value passed some validation when it was created, so you no longer have to validate it again at every use: ’PhoneNumber(String)orOddNumber(u32)`.

Field Shorthand Syntax

If you already have variables with the right names, then you can create the struct using a shorthand:

#[derive(Debug)]
struct Person {
    name: String,
    age: u8,
}

impl Person {
    fn new(name: String, age: u8) -> Person {
        Person { name, age }
    }
}

fn main() {
    let peter = Person::new(String::from("Peter"), 27);
    println!("{peter:?}");
}

The new function could be written using Self as a type, as it is interchangeable with the struct type name

impl Person {
    fn new(name: String, age: u8) -> Self {
        Self { name, age }
    }
}

Enums

The enum keyword allows the creation of a type which has a few different variants:

fn generate_random_number() -> i32 {
    4  // Chosen by fair dice roll. Guaranteed to be random.
}

#[derive(Debug)]
enum CoinFlip {
    Heads,
    Tails,
}

fn flip_coin() -> CoinFlip {
    let random_number = generate_random_number();
    if random_number % 2 == 0 {
        return CoinFlip::Heads;
    } else {
        return CoinFlip::Tails;
    }
}

fn main() {
    println!("You got: {:?}", flip_coin());
}

Key Points:

  • Enumerations allow you to collect a set of values under one type
  • This page offers an enum type CoinFlip with two variants Heads and Tail. You might note the namespace when using variants.
  • This might be a good time to compare Structs and Enums:
    • In both, you can have a simple version without fields (unit struct) or one with different types of fields (variant payloads).
    • In both, associated functions are defined within an impl block.
    • You could even implement the different variants of an enum with separate structs but then they wouldn’t be the same type as they would if they were all defined in an enum.

Variant Payloads

You can define richer enums where the variants carry data. You can then use the match statement to extract the data from each variant:

enum WebEvent {
    PageLoad,                 // Variant without payload
    KeyPress(char),           // Tuple struct variant
    Click { x: i64, y: i64 }, // Full struct variant
}

#[rustfmt::skip]
fn inspect(event: WebEvent) {
    match event {
        WebEvent::PageLoad       => println!("page loaded"),
        WebEvent::KeyPress(c)    => println!("pressed '{c}'"),
        WebEvent::Click { x, y } => println!("clicked at x={x}, y={y}"),
    }
}

fn main() {
    let load = WebEvent::PageLoad;
    let press = WebEvent::KeyPress('x');
    let click = WebEvent::Click { x: 20, y: 80 };

    inspect(load);
    inspect(press);
    inspect(click);
}
  • In the above example, accessing the char in KeyPress, or x and y in Click only works within a match statement.
  • match inspects a hidden discriminant field in the enum.
  • WebEvent::Click { ... } is not exactly the same as WebEvent::Click(Click) with a top level struct Click { ... }. The inlined version cannot implement traits, for example.

Enum Sizes

Rust enums are packed tightly, taking constraints due to alignment into account:

use std::mem::{align_of, size_of};

macro_rules! dbg_size {
    ($t:ty) => {
        println!("{}: size {} bytes, align: {} bytes",
                 stringify!($t), size_of::<$t>(), align_of::<$t>());
    };
}

enum Foo {
    A,
    B,
}

#[repr(u32)]
enum Bar {
    A,  // 0
    B = 10000,
    C,  // 10001
}

fn main() {
    dbg_size!(Foo);
    dbg_size!(Bar);
    dbg_size!(bool);
    dbg_size!(Option<bool>);
    dbg_size!(&i32);
    dbg_size!(Option<&i32>);
}

Key Points:

  • Internally Rust is using a field (discriminant) to keep track of the enum variant.
  • Bar enum demonstrates that there is a way to control the discriminant value and type. If repr is removed, the discriminant type takes 2 bytes, becuase 10001 fits 2 bytes.
  • As a niche optimization an enum discriminant is merged with the pointer so that Option<&Foo> is the same size as &Foo.
  • Option<bool> is another example of tight packing.
  • For some types, Rust guarantees that size_of::<T>() equals size_of::<Option<T>>().
  • Zero-sized types allow for efficient implementation of HashSet using HashMap with () as the value.

方法

Rust allows you to associate functions with your new types. You do this with an impl block:

#[derive(Debug)]
struct Person {
    name: String,
    age: u8,
}

impl Person {
    fn say_hello(&self) {
        println!("Hello, my name is {}", self.name);
    }
}

fn main() {
    let peter = Person {
        name: String::from("Peter"),
        age: 27,
    };
    peter.say_hello();
}

Key Points:

  • It can be helpful to introduce methods by comparing them to functions.
    • Methods are called on an instance of a type (such as a struct or enum), the first parameter represents the instance as self.
    • Developers may choose to use methods to take advantage of method receiver syntax and to help keep them more organized. By using methods we can keep all the implementation code in one predictable place.
  • Point out the use of the keyword self, a method receiver.
    • Show that it is an abbreviated term for self:&Self and perhaps show how the struct name could also be used.
    • Explain that Self is a type alias for the type the impl block is in and can be used elsewhere in the block.
    • Note how self is used like other structs and dot notation can be used to refer to individual fields.
    • This might be a good time to demonstrate how the &self differs from self by modifying the code and trying to run say_hello twice.
  • We describe the distinction between method receivers next.

Method Receiver

The &self above indicates that the method borrows the object immutably. There are other possible receivers for a method:

  • &self: borrows the object from the caller using a shared and immutable reference. The object can be used again afterwards.
  • &mut self: borrows the object from the caller using a unique and mutable reference. The object can be used again afterwards.
  • self: takes ownership of the object and moves it away from the caller. The method becomes the owner of the object. The object will be dropped (deallocated) when the method returns, unless its ownership is explicitly transmitted.
  • mut self: same as above, but while the method owns the object, it can mutate it too. Complete ownership does not automatically mean mutability.
  • No receiver: this becomes a static method on the struct. Typically used to create constructors which are called new by convention.

Beyond variants on self, there are also special wrapper types allowed to be receiver types, such as Box<Self>.

Consider emphasizing on “shared and immutable” and “unique and mutable”. These constraints always come together in Rust due to borrow checker rules, and self is no exception. It won’t be possible to reference a struct from multiple locations and call a mutating (&mut self) method on it.

Example

#[derive(Debug)]
struct Race {
    name: String,
    laps: Vec<i32>,
}

impl Race {
    fn new(name: &str) -> Race {  // No receiver, a static method
        Race { name: String::from(name), laps: Vec::new() }
    }

    fn add_lap(&mut self, lap: i32) {  // Exclusive borrowed read-write access to self
        self.laps.push(lap);
    }

    fn print_laps(&self) {  // Shared and read-only borrowed access to self
        println!("Recorded {} laps for {}:", self.laps.len(), self.name);
        for (idx, lap) in self.laps.iter().enumerate() {
            println!("Lap {idx}: {lap} sec");
        }
    }

    fn finish(self) {  // Exclusive ownership of self
        let total = self.laps.iter().sum::<i32>();
        println!("Race {} is finished, total lap time: {}", self.name, total);
    }
}

fn main() {
    let mut race = Race::new("Monaco Grand Prix");
    race.add_lap(70);
    race.add_lap(68);
    race.print_laps();
    race.add_lap(71);
    race.print_laps();
    race.finish();
    // race.add_lap(42);
}

Key Points:

  • All four methods here use a different method receiver.
    • You can point out how that changes what the function can do with the variable values and if/how it can be used again in main.
    • You can showcase the error that appears when trying to call finish twice.
  • Note, that although the method receivers are different, the non-static functions are called the same way in the main body. Rust enables automatic referencing and dereferencing when calling methods. Rust automatically adds in the &, *, muts so that that object matches the method signature.
  • You might point out that print_laps is using a vector that is iterated over. We describe vectors in more detail in the afternoon.

Pattern Matching

The match keyword let you match a value against one or more patterns. The comparisons are done from top to bottom and the first match wins.

The patterns can be simple values, similarly to switch in C and C++:

fn main() {
    let input = 'x';

    match input {
        'q'                   => println!("Quitting"),
        'a' | 's' | 'w' | 'd' => println!("Moving around"),
        '0'..='9'             => println!("Number input"),
        _                     => println!("Something else"),
    }
}

The _ pattern is a wildcard pattern which matches any value.

Key Points:

  • You might point out how some specific characters are being used when in a patten
    • | as an or
    • .. can expand as much as it needs to be
    • 1..=5 represents an inclusive range
    • _ is a wild card
  • It can be useful to show how binding works, by for instance replacing a wildcard character with a variable, or removing the quotes around q.
  • You can demonstrate matching on a reference.
  • This might be a good time to bring up the concept of irrefutable patterns, as the term can show up in error messages.

Destructuring Enums

Patterns can also be used to bind variables to parts of your values. This is how you inspect the structure of your types. Let us start with a simple enum type:

enum Result {
    Ok(i32),
    Err(String),
}

fn divide_in_two(n: i32) -> Result {
    if n % 2 == 0 {
        Result::Ok(n / 2)
    } else {
        Result::Err(format!("cannot divide {} into two equal parts", n))
    }
}

fn main() {
    let n = 100;
    match divide_in_two(n) {
        Result::Ok(half) => println!("{n} divided in two is {half}"),
        Result::Err(msg) => println!("sorry, an error happened: {msg}"),
    }
}

Here we have used the arms to destructure the Result value. In the first arm, half is bound to the value inside the Ok variant. In the second arm, msg is bound to the error message.

Key points:

  • The if/else expression is returning an enum that is later unpacked with a match.
  • You can try adding a third variant to the enum definition and displaying the errors when running the code. Point out the places where your code is now inexhaustive and how the compiler trys to give you hints.

Destructuring Structs

You can also destructure structs:

struct Foo {
    x: (u32, u32),
    y: u32,
}

#[rustfmt::skip]
fn main() {
    let foo = Foo { x: (1, 2), y: 3 };
    match foo {
        Foo { x: (1, b), y } => println!("x.0 = 1, b = {b}, y = {y}"),
        Foo { y: 2, x: i }   => println!("y = 2, i = {i:?}"),
        Foo { y, .. }        => println!("y = {y}, other fields were ignored"),
    }
}

Destructuring Arrays

You can destructure arrays, tuples, and slices by matching on their elements:

#[rustfmt::skip]
fn main() {
    let triple = [0, -2, 3];
    println!("Tell me about {triple:?}");
    match triple {
        [0, y, z] => println!("First is 0, y = {y}, and z = {z}"),
        [1, ..]   => println!("First is 1 and the rest were ignored"),
        _         => println!("All elements were ignored"),
    }
}

Match Guards

When matching, you can add a guard to a pattern. This is an arbitrary Boolean expression which will be executed if the pattern matches:

#[rustfmt::skip]
fn main() {
    let pair = (2, -2);
    println!("Tell me about {pair:?}");
    match pair {
        (x, y) if x == y     => println!("These are twins"),
        (x, y) if x + y == 0 => println!("Antimatter, kaboom!"),
        (x, _) if x % 2 == 1 => println!("The first one is odd"),
        _                    => println!("No correlation..."),
    }
}

Key Points:

  • Match guards as a separate syntax feature are important and necessary.
  • They are not the same as separate if expression inside of the match arm. An if expression inside of the branch block (after =>) happens after the match arm is selected. Failing the if condition inside of that block won’t result in other arms of the original match expression being considered.
  • You can use the variables defined in the pattern in your if expression.
  • The condition defined in the guard applies to every expression in a pattern with an |.

Day 2: Morning Exercises

We will look at implementing methods in two contexts:

  • Simple struct which tracks health statistics.

  • Multiple structs and enums for a drawing library.

在看完练习后,你可以看看提供的解决方案

Health Statistics

You’re working on implementing a health-monitoring system. As part of that, you need to keep track of users’ health statistics.

You’ll start with some stubbed functions in an impl block as well as a User struct definition. Your goal is to implement the stubbed out methods on the User struct defined in the impl block.

Copy the code below to https://play.rust-lang.org/ and fill in the missing methods:

// TODO: 当你完成实现后删除这个东西
#![allow(unused_variables, dead_code)]

struct User {
    name: String,
    age: u32,
    weight: f32,
}

impl User {
    pub fn new(name: String, age: u32, weight: f32) -> Self {
        unimplemented!()
    }

    pub fn name(&self) -> &str {
        unimplemented!()
    }

    pub fn age(&self) -> u32 {
        unimplemented!()
    }

    pub fn weight(&self) -> f32 {
        unimplemented!()
    }

    pub fn set_age(&mut self, new_age: u32) {
        unimplemented!()
    }

    pub fn set_weight(&mut self, new_weight: f32) {
        unimplemented!()
    }
}

fn main() {
    let bob = User::new(String::from("Bob"), 32, 155.2);
    println!("I'm {} and my age is {}", bob.name(), bob.age());
}

#[test]
fn test_weight() {
    let bob = User::new(String::from("Bob"), 32, 155.2);
    assert_eq!(bob.weight(), 155.2);
}

#[test]
fn test_set_age() {
    let mut bob = User::new(String::from("Bob"), 32, 155.2);
    assert_eq!(bob.age(), 32);
    bob.set_age(33);
    assert_eq!(bob.age(), 33);
}

Polygon Struct

We will create a Polygon struct which contain some points. Copy the code below to https://play.rust-lang.org/ and fill in the missing methods to make the tests pass:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub struct Point {
    // add fields
}

impl Point {
    // add methods
}

pub struct Polygon {
    // add fields
}

impl Polygon {
    // add methods
}

pub struct Circle {
    // add fields
}

impl Circle {
    // add methods
}

pub enum Shape {
    Polygon(Polygon),
    Circle(Circle),
}

#[cfg(test)]
mod tests {
    use super::*;

    fn round_two_digits(x: f64) -> f64 {
        (x * 100.0).round() / 100.0
    }

    #[test]
    fn test_point_magnitude() {
        let p1 = Point::new(12, 13);
        assert_eq!(round_two_digits(p1.magnitude()), 17.69);
    }

    #[test]
    fn test_point_dist() {
        let p1 = Point::new(10, 10);
        let p2 = Point::new(14, 13);
        assert_eq!(round_two_digits(p1.dist(p2)), 5.00);
    }

    #[test]
    fn test_point_add() {
        let p1 = Point::new(16, 16);
        let p2 = p1 + Point::new(-4, 3);
        assert_eq!(p2, Point::new(12, 19));
    }

    #[test]
    fn test_polygon_left_most_point() {
        let p1 = Point::new(12, 13);
        let p2 = Point::new(16, 16);

        let mut poly = Polygon::new();
        poly.add_point(p1);
        poly.add_point(p2);
        assert_eq!(poly.left_most_point(), Some(p1));
    }

    #[test]
    fn test_polygon_iter() {
        let p1 = Point::new(12, 13);
        let p2 = Point::new(16, 16);

        let mut poly = Polygon::new();
        poly.add_point(p1);
        poly.add_point(p2);

        let points = poly.iter().cloned().collect::<Vec<_>>();
        assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);
    }

    #[test]
    fn test_shape_perimeters() {
        let mut poly = Polygon::new();
        poly.add_point(Point::new(12, 13));
        poly.add_point(Point::new(17, 11));
        poly.add_point(Point::new(16, 16));
        let shapes = vec![
            Shape::from(poly),
            Shape::from(Circle::new(Point::new(10, 20), 5)),
        ];
        let perimeters = shapes
            .iter()
            .map(Shape::perimeter)
            .map(round_two_digits)
            .collect::<Vec<_>>();
        assert_eq!(perimeters, vec![15.48, 31.42]);
    }
}

#[allow(dead_code)]
fn main() {}

Since the method signatures are missing from the problem statements, the key part of the exercise is to specify those correctly.

Other interesting parts of the exercise:

  • Derive a Copy trait for some structs, as in tests the methods sometimes don’t borrow their arguments.
  • Discover that Add trait must be implemented for two objects to be addable via “+”.

Control Flow

As we have seen, if is an expression in Rust. It is used to conditionally evaluate one of two blocks, but the blocks can have a value which then becomes the value of the if expression. Other control flow expressions work similarly in Rust.

Blocks

A block in Rust has a value and a type: the value is the last expression of the block:

fn main() {
    let x = {
        let y = 10;
        println!("y: {y}");
        let z = {
            let w = {
                3 + 4
            };
            println!("w: {w}");
            y * w
        };
        println!("z: {z}");
        z - y
    };
    println!("x: {x}");
}

The same rule is used for functions: the value of the function body is the return value:

fn double(x: i32) -> i32 {
    x + x
}

fn main() {
    println!("doubled: {}", double(7));
}

However if the last expression ends with ;, then the resulting value and type is ().

Key Points:

  • The point of this slide is to show that blocks have a type and value in Rust.
  • You can show how the value of the block changes by changing the last line in the block. For instance, adding/removing a semicolon or using a return.

if expressions

You use if very similarly to how you would in other languages:

fn main() {
    let mut x = 10;
    if x % 2 == 0 {
        x = x / 2;
    } else {
        x = 3 * x + 1;
    }
}

In addition, you can use it as an expression. This does the same as above:

fn main() {
    let mut x = 10;
    x = if x % 2 == 0 {
        x / 2
    } else {
        3 * x + 1
    };
}

Because if is an expression and must have a particular type, both of its branch blocks must have the same type. Consider showing what happens if you add ; after x / 2 in the second example.

if let expressions

If you want to match a value against a pattern, you can use if let:

fn main() {
    let arg = std::env::args().next();
    if let Some(value) = arg {
        println!("Program name: {value}");
    } else {
        println!("Missing name?");
    }
}

See pattern matching for more details on patterns in Rust.

  • if let can be more concise than match, e.g., when only one case is interesting. In contrast, match requires all branches to be covered.
    • For the similar use case consider demonstrating a newly stabilized let else feature.
  • A common usage is handling Some values when working with Option.
  • Unlike match, if let does not support guard clauses for pattern matching.

while expressions

The while keyword works very similar to other languages:

fn main() {
    let mut x = 10;
    while x != 1 {
        x = if x % 2 == 0 {
            x / 2
        } else {
            3 * x + 1
        };
    }
    println!("Final x: {x}");
}

while let expressions

Like with if, there is a while let variant which repeatedly tests a value against a pattern:

fn main() {
    let v = vec![10, 20, 30];
    let mut iter = v.into_iter();

    while let Some(x) = iter.next() {
        println!("x: {x}");
    }
}

Here the iterator returned by v.iter() will return a Option<i32> on every call to next(). It returns Some(x) until it is done, after which it will return None. The while let lets us keep iterating through all items.

See pattern matching for more details on patterns in Rust.

for expressions

The for expression is closely related to the while let expression. It will automatically call into_iter() on the expression and then iterate over it:

fn main() {
    let v = vec![10, 20, 30];

    for x in v {
        println!("x: {x}");
    }
    
    for i in (0..10).step_by(2) {
        println!("i: {i}");
    }
}

You can use break and continue here as usual.

  • Index iteration is not a special syntax in Rust for just that case.
  • (0..10) is a range that implements an Iterator trait.
  • step_by is a method that returns another Iterator that skips every other element.

loop expressions

Finally, there is a loop keyword which creates an endless loop. Here you must either break or return to stop the loop:

fn main() {
    let mut x = 10;
    loop {
        x = if x % 2 == 0 {
            x / 2
        } else {
            3 * x + 1
        };
        if x == 1 {
            break;
        }
    }
    println!("Final x: {x}");
}

match expressions

The match keyword is used to match a value against one or more patterns. In that sense, it works like a series of if let expressions:

fn main() {
    match std::env::args().next().as_deref() {
        Some("cat") => println!("Will do cat things"),
        Some("ls")  => println!("Will ls some files"),
        Some("mv")  => println!("Let's move some files"),
        Some("rm")  => println!("Uh, dangerous!"),
        None        => println!("Hmm, no program name?"),
        _           => println!("Unknown program name!"),
    }
}

Like if let, each match arm must have the same type. The type is the last expression of the block, if any. In the example above, the type is ().

See pattern matching for more details on patterns in Rust.

break and continue

If you want to exit a loop early, use break, if you want to immediately start the next iteration use continue. Both continue and break can optionally take a label argument which is used to break out of nested loops:

fn main() {
    let v = vec![10, 20, 30];
    let mut iter = v.into_iter();
    'outer: while let Some(x) = iter.next() {
        println!("x: {x}");
        let mut i = 0;
        while i < x {
            println!("x: {x}, i: {i}");
            i += 1;
            if i == 3 {
                break 'outer;
            }
        }
    }
}

In this case we break the outer loop after 3 iterations of the inner loop.

Standard Library

Rust comes with a standard library which helps establish a set of common types used by Rust library and programs. This way, two libraries can work together smoothly because they both use the same String type.

The common vocabulary types include:

  • Option and Result types: used for optional values and error handling.

  • String: the default string type used for owned data.

  • Vec: a standard extensible vector.

  • HashMap: a hash map type with a configurable hashing algorithm.

  • Box: an owned pointer for heap-allocated data.

  • Rc: a shared reference-counted pointer for heap-allocated data.

  • In fact, Rust contains several layers of the Standard Library: core, alloc and std.
  • core includes the most basic types and functions that don’t depend on libc, allocator or even the presence of an operating system.
  • alloc includes types which require a global heap allocator, such as Vec, Box and Arc.
  • Embedded Rust applications often only use core, and sometimes alloc.

String

String is the standard heap-allocated growable UTF-8 string buffer:

fn main() {
    let mut s1 = String::new();
    s1.push_str("Hello");
    println!("s1: len = {}, capacity = {}", s1.len(), s1.capacity());

    let mut s2 = String::with_capacity(s1.len() + 1);
    s2.push_str(&s1);
    s2.push('!');
    println!("s2: len = {}, capacity = {}", s2.len(), s2.capacity());

    let s3 = String::from("🇨🇭");
    println!("s3: len = {}, number of chars = {}", s3.len(),
             s3.chars().count());
}

String implements Deref<Target = str>, which means that you can call all str methods on a String.

  • len returns the size of the String in bytes, not its length in characters.
  • chars returns an iterator over the actual characters.
  • String implements Deref<Target = str> which transparently gives it access to str’s methods.

Option and Result

The types represent optional data:

fn main() {
    let numbers = vec![10, 20, 30];
    let first: Option<&i8> = numbers.first();
    println!("first: {first:?}");

    let idx: Result<usize, usize> = numbers.binary_search(&10);
    println!("idx: {idx:?}");
}
  • Option and Result are widely used not just in the standard library.
  • Option<&T> has zero space overhead compared to &T.
  • Result is the standard type to implement error handling as we will see on Day 3.
  • binary_search returns Result<usize, usize>.
    • If found, Result::Ok holds the index where the element is found.
    • Otherwise, Result::Err contains the index where such an element should be inserted.

Vec

Vec is the standard resizable heap-allocated buffer:

fn main() {
    let mut v1 = Vec::new();
    v1.push(42);
    println!("v1: len = {}, capacity = {}", v1.len(), v1.capacity());

    let mut v2 = Vec::with_capacity(v1.len() + 1);
    v2.extend(v1.iter());
    v2.push(9999);
    println!("v2: len = {}, capacity = {}", v2.len(), v2.capacity());
    
    let mut numbers = vec![1, 2, 3];
    numbers.push(42);
}

Vec implements Deref<Target = [T]>, which means that you can call slice methods on a Vec.

Notice how Vec<T> is a generic type too, but you don’t have to specify T explicitly. As always with Rust type inference, the T was established during the first push call.

vec![...] is a canonical macro to use instead of Vec::new() and it supports adding initial elements to the vector.

HashMap

Standard hash map with protection against HashDoS attacks:

use std::collections::HashMap;

fn main() {
    let mut page_counts = HashMap::new();
    page_counts.insert("Adventures of Huckleberry Finn".to_string(), 207);
    page_counts.insert("Grimms' Fairy Tales".to_string(), 751);
    page_counts.insert("Pride and Prejudice".to_string(), 303);

    if !page_counts.contains_key("Les Misérables") {
        println!("We've know about {} books, but not Les Misérables.",
                 page_counts.len());
    }

    for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
        match page_counts.get(book) {
            Some(count) => println!("{book}: {count} pages"),
            None => println!("{book} is unknown.")
        }
    }
}

Box

Box is an owned pointer to data on the heap:

fn main() {
    let five = Box::new(5);
    println!("five: {}", *five);
}
5StackHeapfive

Box<T> implements Deref<Target = T>, which means that you can call methods from T directly on a Box<T>.

  • Box is like std::unique_ptr in C++.
  • In the above example, you can even leave out the * in the println! statement thanks to Deref.

Box with Recursive Data Structures

Recursive data types or data types with dynamic sizes need to use a Box:

#[derive(Debug)]
enum List<T> {
    Cons(T, Box<List<T>>),
    Nil,
}

fn main() {
    let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
    println!("{list:?}");
}
StackHeaplistTagConsTagConsTagNil010211

If the Box was not used here and we attempted to embed a List directly into the List, the compiler would not compute a fixed size of the struct in memory, it would look infinite.

Box solves this problem as it has the same size as a regular pointer and just points at the next element of the List in the heap.

Niche Optimization

#[derive(Debug)]
enum List<T> {
    Cons(T, Box<List<T>>),
    Nil,
}

fn main() {
    let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
    println!("{list:?}");
}

A Box cannot be empty, so the pointer is always valid and non-null. This allows the compiler to optimize the memory layout:

StackHeaplist0102null1/Tag1/Tag1/Tag

Rc

Rc is a reference-counted shared pointer. Use this when you need to refer to the same data from multiple places:

use std::rc::Rc;

fn main() {
    let mut a = Rc::new(10);
    let mut b = a.clone();

    println!("a: {a}");
    println!("b: {b}");
}

If you need to mutate the data inside an Rc, you will need to wrap the data in a type such as Cell or RefCell. See Arc if you are in a multi-threaded context.

  • Like C++’s std::shared_ptr.
  • clone is cheap: creates a pointer to the same allocation and increases the reference count.
  • make_mut actually clones the inner value if necessary (“clone-on-write”) and returns a mutable reference.

Modules

We have seen how impl blocks let us namespace functions to a type.

Similarly, mod lets us namespace types and functions:

mod foo {
    pub fn do_something() {
        println!("In the foo module");
    }
}

mod bar {
    pub fn do_something() {
        println!("In the bar module");
    }
}

fn main() {
    foo::do_something();
    bar::do_something();
}

Visibility

Modules are a privacy boundary:

  • Module items are private by default (hides implementation details).
  • Parent and sibling items are always visible.
mod outer {
    fn private() {
        println!("outer::private");
    }

    pub fn public() {
        println!("outer::public");
    }

    mod inner {
        fn private() {
            println!("outer::inner::private");
        }

        pub fn public() {
            println!("outer::inner::public");
            super::private();
        }
    }
}

fn main() {
    outer::public();
}

Paths

Paths are resolved as follows:

  1. As a relative path:

    • foo or self::foo refers to foo in the current module,
    • super::foo refers to foo in the parent module.
  2. As an absolute path:

    • crate::foo refers to foo in the root of the current crate,
    • bar::foo refers to foo in the bar crate.

Filesystem Hierarchy

The module content can be omitted:

mod garden;

The garden module content is found at:

  • src/garden.rs (modern Rust 2018 style)
  • src/garden/mod.rs (older Rust 2015 style)

Similarly, a garden::vegetables module can be found at:

  • src/garden/vegetables.rs (modern Rust 2018 style)
  • src/garden/vegetables/mod.rs (older Rust 2015 style)

The crate root is in:

  • src/lib.rs (for a library crate)
  • src/main.rs (for a binary crate)

Day 2: Afternoon Exercises

The exercises for this afternoon will focus on strings and iterators.

在看完练习后,你可以看看提供的[解决方案]。

Luhn Algorithm

The Luhn algorithm is used to validate credit card numbers. The algorithm takes a string as input and does the following to validate the credit card number:

  • Ignore all spaces. Reject number with less than two digits.

  • Moving from right to left, double every second digit: for the number 1234, we double 3 and 1.

  • After doubling a digit, sum the digits. So doubling 7 becomes 14 which becomes 5.

  • Sum all the undoubled and doubled digits.

  • The credit card number is valid if the sum ends with 0.

Copy the following code to https://play.rust-lang.org/ and implement the function:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub fn luhn(cc_number: &str) -> bool {
    unimplemented!()
}

#[test]
fn test_non_digit_cc_number() {
    assert!(!luhn("foo"));
}

#[test]
fn test_empty_cc_number() {
    assert!(!luhn(""));
    assert!(!luhn(" "));
    assert!(!luhn("  "));
    assert!(!luhn("    "));
}

#[test]
fn test_single_digit_cc_number() {
    assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {
    assert!(luhn(" 0 0 "));
}

#[test]
fn test_valid_cc_number() {
    assert!(luhn("4263 9826 4026 9299"));
    assert!(luhn("4539 3195 0343 6467"));
    assert!(luhn("7992 7398 713"));
}

#[test]
fn test_invalid_cc_number() {
    assert!(!luhn("4223 9826 4026 9299"));
    assert!(!luhn("4539 3195 0343 6476"));
    assert!(!luhn("8273 1232 7352 0569"));
}

#[allow(dead_code)]
fn main() {}

Strings and Iterators

In this exercise, you are implementing a routing component of a web server. The server is configured with a number of path prefixes which are matched against request paths. The path prefixes can contain a wildcard character which matches a full segment. See the unit tests below.

Copy the following code to https://play.rust-lang.org/ and make the tests pass. Try avoiding allocating a Vec for your intermediate results:

#![allow(unused)]
fn main() {
// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {
    unimplemented!()
}

#[test]
fn test_matches_without_wildcard() {
    assert!(prefix_matches("/v1/publishers", "/v1/publishers"));
    assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc-123"));
    assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc/books"));

    assert!(!prefix_matches("/v1/publishers", "/v1"));
    assert!(!prefix_matches("/v1/publishers", "/v1/publishersBooks"));
    assert!(!prefix_matches("/v1/publishers", "/v1/parent/publishers"));
}

#[test]
fn test_matches_with_wildcard() {
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/books"
    ));
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/bar/books"
    ));
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/books/book1"
    ));

    assert!(!prefix_matches("/v1/publishers/*/books", "/v1/publishers"));
    assert!(!prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/booksByAuthor"
    ));
}
}

Welcome to Day 3

Today, we will cover some more advanced topics of Rust:

  • Traits: deriving traits, default methods, and important standard library traits.

  • Generics: generic data types, generic methods, monomorphization, and trait objects.

  • Error handling: panics, Result, and the try operator ?.

  • Testing: unit tests, documentation tests, and integration tests.

  • Unsafe Rust: raw pointers, static variables, unsafe functions, and extern functions.

Traits

Rust lets you abstract over types with traits. They’re similar to interfaces:

trait Greet {
    fn say_hello(&self);
}

struct Dog {
    name: String,
}

struct Cat;  // No name, cats won't respond to it anyway.

impl Greet for Dog {
    fn say_hello(&self) {
        println!("Wuf, my name is {}!", self.name);
    }
}

impl Greet for Cat {
    fn say_hello(&self) {
        println!("Miau!");
    }
}

fn main() {
    let pets: Vec<Box<dyn Greet>> = vec![
        Box::new(Dog { name: String::from("Fido") }),
        Box::new(Cat),
    ];
    for pet in pets {
        pet.say_hello();
    }
}
  • Traits may specify pre-implemented (default) methods and methods that users are required to implement themselves. Methods with default implementations can rely on required methods.
  • Types that implement a given trait may be of different sizes. This makes it impossible to have things like Vec<Greet> in the example above.
  • dyn Greet is a way to tell the compiler about a dynamically sized type that implements Greet.
  • In the example, pets holds Fat Pointers to objects that implement Greet. The Fat Pointer consist of two components, a pointer to the actual object and a pointer to the virtual method table for the Greet implementation of that particular object.

Compare these outputs in the above example:

    println!("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>());
    println!("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>());
    println!("{}", std::mem::size_of::<&dyn Greet>());
    println!("{}", std::mem::size_of::<Box<dyn Greet>>());

Deriving Traits

You can let the compiler derive a number of traits:

#[derive(Debug, Clone, PartialEq, Eq, Default)]
struct Player {
    name: String,
    strength: u8,
    hit_points: u8,
}

fn main() {
    let p1 = Player::default();
    let p2 = p1.clone();
    println!("Is {:?}\nequal to {:?}?\nThe answer is {}!", &p1, &p2,
             if p1 == p2 { "yes" } else { "no" });
}

Default Methods

Traits can implement behavior in terms of other trait methods:

trait Equals {
    fn equal(&self, other: &Self) -> bool;
    fn not_equal(&self, other: &Self) -> bool {
        !self.equal(other)
    }
}

#[derive(Debug)]
struct Centimeter(i16);

impl Equals for Centimeter {
    fn equal(&self, other: &Centimeter) -> bool {
        self.0 == other.0
    }
}

fn main() {
    let a = Centimeter(10);
    let b = Centimeter(20);
    println!("{a:?} equals {b:?}: {}", a.equal(&b));
    println!("{a:?} not_equals {b:?}: {}", a.not_equal(&b));
}

Important Traits

We will now look at some of the most common traits of the Rust standard library:

  • Iterator and IntoIterator used in for loops,
  • From and Into used to convert values,
  • Read and Write used for IO,
  • Add, Mul, … used for operator overloading, and
  • Drop used for defining destructors.

Iterators

You can implement the Iterator trait on your own types:

struct Fibonacci {
    curr: u32,
    next: u32,
}

impl Iterator for Fibonacci {
    type Item = u32;

    fn next(&mut self) -> Option<Self::Item> {
        let new_next = self.curr + self.next;
        self.curr = self.next;
        self.next = new_next;
        Some(self.curr)
    }
}

fn main() {
    let fib = Fibonacci { curr: 0, next: 1 };
    for (i, n) in fib.enumerate().take(5) {
        println!("fib({i}): {n}");
    }
}
  • IntoIterator is the trait that makes for loops work. It is implemented by collection types such as Vec<T> and references to them such as &Vec<T> and &[T]. Ranges also implement it.
  • The Iterator trait implements many common functional programming operations over collections (e.g. map, filter, reduce, etc). This is the trait where you can find all the documentation about them. In Rust these functions should produce the code as efficient as equivalent imperative implementations.

FromIterator

FromIterator lets you build a collection from an Iterator.

fn main() {
    let primes = vec![2, 3, 5, 7];
    let prime_squares = primes.into_iter().map(|prime| prime * prime).collect::<Vec<_>>();
}

Iterator implements fn collect<B>(self) -> B where B: FromIterator<Self::Item>, Self: Sized

There are also implementations which let you do cool things like convert an Iterator<Item = Result<V, E>> into a Result<Vec<V>, E>.

From and Into

Types implement From and Into to facilitate type conversions:

fn main() {
    let s = String::from("hello");
    let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);
    let one = i16::from(true);
    let bigger = i32::from(123i16);
    println!("{s}, {addr}, {one}, {bigger}");
}

Into is automatically implemented when From is implemented:

fn main() {
    let s: String = "hello".into();
    let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();
    let one: i16 = true.into();
    let bigger: i32 = 123i16.into();
    println!("{s}, {addr}, {one}, {bigger}");
}
  • That’s why it is common to only implement From, as your type will get Into implementation too.
  • When declaring a function argument input type like “anything that can be converted into a String”, the rule is opposite, you should use Into. Your function will accept types that implement From and those that only implement Into.

Read and Write

Using Read and BufRead, you can abstract over u8 sources:

use std::io::{BufRead, BufReader, Read, Result};

fn count_lines<R: Read>(reader: R) -> usize {
    let buf_reader = BufReader::new(reader);
    buf_reader.lines().count()
}

fn main() -> Result<()> {
    let slice: &[u8] = b"foo\nbar\nbaz\n";
    println!("lines in slice: {}", count_lines(slice));

    let file = std::fs::File::open(std::env::current_exe()?)?;
    println!("lines in file: {}", count_lines(file));
    Ok(())
}

Similarly, Write lets you abstract over u8 sinks:

use std::io::{Result, Write};

fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {
    writer.write_all(msg.as_bytes())?;
    writer.write_all("\n".as_bytes())
}

fn main() -> Result<()> {
    let mut buffer = Vec::new();
    log(&mut buffer, "Hello")?;
    log(&mut buffer, "World")?;
    println!("Logged: {:?}", buffer);
    Ok(())
}

Add, Mul, …

Operator overloading is implemented via traits in std::ops:

#[derive(Debug, Copy, Clone)]
struct Point { x: i32, y: i32 }

impl std::ops::Add for Point {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        Self {x: self.x + other.x, y: self.y + other.y}
    }
}

fn main() {
    let p1 = Point { x: 10, y: 20 };
    let p2 = Point { x: 100, y: 200 };
    println!("{:?} + {:?} = {:?}", p1, p2, p1 + p2);
}

Discussion points:

  • You could implement Add for &Point. In which situations is that useful?
    • Answer: Add:add consumes self. If type T for which you are overloading the operator is not Copy, you should consider overloading the operator for &T as well. This avoids unnecessary cloning on the call site.
  • Why is Output an associated type? Could it be made a type parameter?
    • Short answer: Type parameters are controlled by the caller, but associated types (like Output) are controlled by the implementor of a trait.

The Drop Trait

Values which implement Drop can specify code to run when they go out of scope:

struct Droppable {
    name: &'static str,
}

impl Drop for Droppable {
    fn drop(&mut self) {
        println!("Dropping {}", self.name);
    }
}

fn main() {
    let a = Droppable { name: "a" };
    {
        let b = Droppable { name: "b" };
        {
            let c = Droppable { name: "c" };
            let d = Droppable { name: "d" };
            println!("Exiting block B");
        }
        println!("Exiting block A");
    }
    drop(a);
    println!("Exiting main");
}

Discussion points:

  • Why does not Drop::drop take self?
    • Short-answer: If it did, std::mem::drop would be called at the end of the block, resulting in another call to Drop::drop, and a stack overflow!
  • Try replacing drop(a) with a.drop().

Generics

Rust support generics, which lets you abstract an algorithm (such as sorting) over the types used in the algorithm.

Generic Data Types

You can use generics to abstract over the concrete field type:

#[derive(Debug)]
struct Point<T> {
    x: T,
    y: T,
}

fn main() {
    let integer = Point { x: 5, y: 10 };
    let float = Point { x: 1.0, y: 4.0 };
    println!("{integer:?} and {float:?}");
}

Generic Methods

You can declare a generic type on your impl block:

#[derive(Debug)]
struct Point<T>(T, T);

impl<T> Point<T> {
    fn x(&self) -> &T {
        &self.0  // + 10
    }

    // fn set_x(&mut self, x: T)
}

fn main() {
    let p = Point(5, 10);
    println!("p.x = {}", p.x());
}
  • Q: Why T is specified twice in impl<T> Point<T> {}? Isn’t that redundant?
    • This is because it is a generic implementation section for generic type. They are independently generic.
    • It means these methods are defined for any T.
    • It is possible to write impl Point<u32> { .. }.
      • Point is still generic and you can use Point<f64>, but methods in this block will only be available for Point<u32>.

Trait Bounds

When working with generics, you often want to limit the types. You can do this with T: Trait or impl Trait:

fn duplicate<T: Clone>(a: T) -> (T, T) {
    (a.clone(), a.clone())
}

// struct NotClonable;

fn main() {
    let foo = String::from("foo");
    let pair = duplicate(foo);
}

Consider showing a where clause syntax. Students can encounter it too when reading code.

fn duplicate<T>(a: T) -> (T, T)
where
    T: Clone,
{
    (a.clone(), a.clone())
}
  • It declutters the function signature if you have many parameters.
  • It has additional features making it more powerful.
    • If someone asks, the extra feature is that the type on the left of “:” can be arbitrary, like Option<T>.

impl Trait

Similar to trait bounds, an impl Trait syntax can be used in function arguments and return values:

use std::fmt::Display;

fn get_x(name: impl Display) -> impl Display {
    format!("Hello {name}")
}

fn main() {
    let x = get_x("foo");
    println!("{x}");
}
  • impl Trait cannot be used with the ::<> turbo fish syntax.
  • impl Trait allows you to work with types which you cannot name.

The meaning of impl Trait is a bit different in the different positions.

  • For a parameter, impl Trait is like an anonymous generic parameter with a trait bound.
  • For a return type, it means that the return type is some concrete type that implements the trait, without naming the type. This can be useful when you don’t want to expose the concrete type in a public API.

This example is great, because it uses impl Display twice. It helps to explain that nothing here enforces that it is the same impl Display type. If we used a single T: Display, it would enforce the constraint that input T and return T type are the same type. It would not work for this particular function, as the type we expect as input is likely not what format! returns. If we wanted to do the same via : Display syntax, we’d need two independent generic parameters.

Closures

Closures or lambda expressions have types which cannot be named. However, they implement special Fn, FnMut, and FnOnce traits:

fn apply_with_log(func: impl FnOnce(i32) -> i32, input: i32) -> i32 {
    println!("Calling function on {input}");
    func(input)
}

fn main() {
    let add_3 = |x| x + 3;
    let mul_5 = |x| x * 5;

    println!("add_3: {}", apply_with_log(add_3, 10));
    println!("mul_5: {}", apply_with_log(mul_5, 20));
}

If you have an FnOnce, you may only call it once. It might consume captured values.

An FnMut might mutate captured values, so you can call it multiple times but not concurrently.

An Fn neither consumes nor mutates captured values, or perhaps captures nothing at all, so it can be called multiple times concurrently.

FnMut is a subtype of FnOnce. Fn is a subtype of FnMut and FnOnce. I.e. you can use an FnMut wherever an FnOnce is called for, and you can use an Fn wherever an FnMut or FnOnce is called for.

move closures only implement FnOnce.

Monomorphization

Generic code is turned into non-generic code based on the call sites:

fn main() {
    let integer = Some(5);
    let float = Some(5.0);
}

behaves as if you wrote

enum Option_i32 {
    Some(i32),
    None,
}

enum Option_f64 {
    Some(f64),
    None,
}

fn main() {
    let integer = Option_i32::Some(5);
    let float = Option_f64::Some(5.0);
}

This is a zero-cost abstraction: you get exactly the same result as if you had hand-coded the data structures without the abstraction.

Trait Objects

We’ve seen how a function can take arguments which implement a trait:

use std::fmt::Display;

fn print<T: Display>(x: T) {
    println!("Your value: {}", x);
}

fn main() {
    print(123);
    print("Hello");
}

However, how can we store a collection of mixed types which implement Display?

fn main() {
    let xs = vec![123, "Hello"];
}

For this, we need trait objects:

use std::fmt::Display;

fn main() {
    let xs: Vec<Box<dyn Display>> = vec![Box::new(123), Box::new("Hello")];
    for x in xs {
        println!("x: {x}");
    }
}

Memory layout after allocating xs:

<str as Display>::fmt<i32 as Display>::fmtStackHeapxsptrlen2capacity2Hello7b000000

Similarly, you need a trait object if you want to return different values implementing a trait:

fn numbers(n: i32) -> Box<dyn Iterator<Item=i32>> {
    if n > 0 {
        Box::new(0..n)
    } else {
        Box::new((n..0).rev())
    }
}

fn main() {
    println!("{:?}", numbers(-5).collect::<Vec<_>>());
    println!("{:?}", numbers(5).collect::<Vec<_>>());
}

Day 3: Morning Exercises

We will design a classical GUI library traits and trait objects.

在看完练习后,你可以看看提供的解决方案

A Simple GUI Library

Let us design a classical GUI library using our new knowledge of traits and trait objects.

We will have a number of widgets in our library:

  • Window: has a title and contains other widgets.
  • Button: has a label and a callback function which is invoked when the button is pressed.
  • Label: has a label.

The widgets will implement a Widget trait, see below.

Copy the code below to https://play.rust-lang.org/, fill in the missing draw_into methods so that you implement the Widget trait:

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

pub trait Widget {
    /// Natural width of `self`.
    fn width(&self) -> usize;

    /// Draw the widget into a buffer.
    fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

    /// Draw the widget on standard output.
    fn draw(&self) {
        let mut buffer = String::new();
        self.draw_into(&mut buffer);
        println!("{}", &buffer);
    }
}

pub struct Label {
    label: String,
}

impl Label {
    fn new(label: &str) -> Label {
        Label {
            label: label.to_owned(),
        }
    }
}

pub struct Button {
    label: Label,
    callback: Box<dyn FnMut()>,
}

impl Button {
    fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {
        Button {
            label: Label::new(label),
            callback,
        }
    }
}

pub struct Window {
    title: String,
    widgets: Vec<Box<dyn Widget>>,
}

impl Window {
    fn new(title: &str) -> Window {
        Window {
            title: title.to_owned(),
            widgets: Vec::new(),
        }
    }

    fn add_widget(&mut self, widget: Box<dyn Widget>) {
        self.widgets.push(widget);
    }
}


impl Widget for Label {
    fn width(&self) -> usize {
        unimplemented!()
    }

    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        unimplemented!()
    }
}

impl Widget for Button {
    fn width(&self) -> usize {
        unimplemented!()
    }

    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        unimplemented!()
    }
}

impl Widget for Window {
    fn width(&self) -> usize {
        unimplemented!()
    }

    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        unimplemented!()
    }
}

fn main() {
    let mut window = Window::new("Rust GUI Demo 1.23");
    window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
    window.add_widget(Box::new(Button::new(
        "Click me!",
        Box::new(|| println!("You clicked the button!")),
    )));
    window.draw();
}

The output of the above program can be something simple like this:

========
Rust GUI Demo 1.23
========

This is a small text GUI demo.

| Click me! |

If you want to draw aligned text, you can use the fill/alignment formatting operators. In particular, notice how you can pad with different characters (here a '/') and how you can control alignment:

fn main() {
    let width = 10;
    println!("left aligned:  |{:/<width$}|", "foo");
    println!("centered:      |{:/^width$}|", "foo");
    println!("right aligned: |{:/>width$}|", "foo");
}

Using such alignment tricks, you can for example produce output like this:

+--------------------------------+
|       Rust GUI Demo 1.23       |
+================================+
| This is a small text GUI demo. |
| +-----------+                  |
| | Click me! |                  |
| +-----------+                  |
+--------------------------------+

Error Handling

Error handling in Rust is done using explicit control flow:

  • Functions that can have errors list this in their return type,
  • There are no exceptions.

Panics

Rust will trigger a panic if a fatal error happens at runtime:

fn main() {
    let v = vec![10, 20, 30];
    println!("v[100]: {}", v[100]);
}
  • Panics are for unrecoverable and unexpected errors.
    • Panics are symptoms of bugs in the program.
  • Use non-panicking APIs (such as Vec::get) if crashing is not acceptable.

Catching the Stack Unwinding

By default, a panic will cause the stack to unwind. The unwinding can be caught:

#![allow(unused)]
fn main() {
use std::panic;

let result = panic::catch_unwind(|| {
    println!("hello!");
});
assert!(result.is_ok());

let result = panic::catch_unwind(|| {
    panic!("oh no!");
});
assert!(result.is_err());
}
  • This can be useful in servers which should keep running even if a single request crashes.
  • This does not work if panic = 'abort' is set in your Cargo.toml.

Structured Error Handling with Result

We have already seen the Result enum. This is used pervasively when errors are expected as part of normal operation:

use std::fs::File;
use std::io::Read;

fn main() {
    let file = File::open("diary.txt");
    match file {
        Ok(mut file) => {
            let mut contents = String::new();
            file.read_to_string(&mut contents);
            println!("Dear diary: {contents}");
        },
        Err(err) => {
            println!("The diary could not be opened: {err}");
        }
    }
}
  • As with Option, the successful value sits inside of Result, forcing the developer to explicitly extract it. This encourages error checking. In the case where an error should never happen, unwrap() or expect() can be called, and this is a signal of the developer intent too.
  • Result documentation is a recommended read. Not during the course, but it is worth mentioning. It contains a lot of convenience methods and functions that help functional-style programming.

Propagating Errors with ?

The try-operator ? is used to return errors to the caller. It lets you turn the common

match some_expression {
    Ok(value) => value,
    Err(err) => return Err(err),
}

into the much simpler

some_expression?

We can use this to simplify our error handing code:

use std::fs;
use std::io::{self, Read};

fn read_username(path: &str) -> Result<String, io::Error> {
    let username_file_result = fs::File::open(path);

    let mut username_file = match username_file_result {
        Ok(file) => file,
        Err(e) => return Err(e),
    };

    let mut username = String::new();

    match username_file.read_to_string(&mut username) {
        Ok(_) => Ok(username),
        Err(e) => Err(e),
    }
}

fn main() {
    //fs::write("config.dat", "alice").unwrap();
    let username = read_username("config.dat");
    println!("username or error: {username:?}");
}

要点:

  • The username variable can be either Ok(string) or Err(error).
  • Use the fs::write call to test out the different scenarios: no file, empty file, file with username.

Converting Error Types

The effective expansion of ? is a little more complicated than previously indicated:

expression?

works the same as

match expression {
    Ok(value) => value,
    Err(err)  => return Err(From::from(err)),
}

The From::from call here means we attempt to convert the error type to the type returned by the function:

use std::error::Error;
use std::{fs, io};
use std::io::Read;
use std::fmt::{self, Display, Formatter};

#[derive(Debug)]
enum ReadUsernameError {
    IoError(io::Error),
    EmptyUsername(String),
}

impl Error for ReadUsernameError {}

impl Display for ReadUsernameError {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        match self {
            Self::IoError(e) => write!(f, "IO error: {}", e),
            Self::EmptyUsername(filename) => write!(f, "Found no username in {}", filename),
        }
    }
}

impl From<io::Error> for ReadUsernameError {
    fn from(err: io::Error) -> ReadUsernameError {
        ReadUsernameError::IoError(err)
    }
}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
    let mut username = String::with_capacity(100);
    fs::File::open(path)?.read_to_string(&mut username)?;
    if username.is_empty() {
        return Err(ReadUsernameError::EmptyUsername(String::from(path)));
    }
    Ok(username)
}

fn main() {
    //fs::write("config.dat", "").unwrap();
    let username = read_username("config.dat");
    println!("username or error: {username:?}");
}

要点:

  • The username variable can be either Ok(string) or Err(error).
  • Use the fs::write call to test out the different scenarios: no file, empty file, file with username.

It is good practice for all error types to implement std::error::Error, which requires Debug and Display. It’s generally helpful for them to implement Clone and Eq too where possible, to make life easier for tests and consumers of your library. In this case we can’t easily do so, because io::Error doesn’t implement them.

Deriving Error Enums

The thiserror crate is a popular way to create an error enum like we did on the previous page:

use std::{fs, io};
use std::io::Read;
use thiserror::Error;

#[derive(Debug, Error)]
enum ReadUsernameError {
    #[error("Could not read: {0}")]
    IoError(#[from] io::Error),
    #[error("Found no username in {0}")]
    EmptyUsername(String),
}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
    let mut username = String::with_capacity(100);
    fs::File::open(path)?.read_to_string(&mut username)?;
    if username.is_empty() {
        return Err(ReadUsernameError::EmptyUsername(String::from(path)));
    }
    Ok(username)
}

fn main() {
    //fs::write("config.dat", "").unwrap();
    match read_username("config.dat") {
        Ok(username) => println!("Username: {username}"),
        Err(err)     => println!("Error: {err}"),
    }
}

thiserror’s derive macro automatically implements std::error::Error, and optionally Display (if the #[error(...)] attributes are provided) and From (if the #[from] attribute is added). It also works for structs.

It doesn’t affect your public API, which makes it good for libraries.

Dynamic Error Types

Sometimes we want to allow any type of error to be returned without writing our own enum covering all the different possibilities. std::error::Error makes this easy.

use std::fs::{self, File};
use std::io::Read;
use thiserror::Error;
use std::error::Error;

#[derive(Clone, Debug, Eq, Error, PartialEq)]
#[error("Found no username in {0}")]
struct EmptyUsernameError(String);

fn read_username(path: &str) -> Result<String, Box<dyn Error>> {
    let mut username = String::with_capacity(100);
    File::open(path)?.read_to_string(&mut username)?;
    if username.is_empty() {
        return Err(EmptyUsernameError(String::from(path)).into());
    }
    Ok(username)
}

fn main() {
    //fs::write("config.dat", "").unwrap();
    match read_username("config.dat") {
        Ok(username) => println!("Username: {username}"),
        Err(err)     => println!("Error: {err}"),
    }
}

This saves on code, but gives up the ability to cleanly handle different error cases differently in the program. As such it’s generally not a good idea to use Box<dyn Error> in the public API of a library, but it can be a good option in a program where you just want to display the error message somewhere.

Adding Context to Errors

The widely used anyhow crate can help you add contextual information to your errors and allows you to have fewer custom error types:

use std::{fs, io};
use std::io::Read;
use anyhow::{Context, Result, bail};

fn read_username(path: &str) -> Result<String> {
    let mut username = String::with_capacity(100);
    fs::File::open(path)
        .context(format!("Failed to open {path}"))?
        .read_to_string(&mut username)
        .context("Failed to read")?;
    if username.is_empty() {
        bail!("Found no username in {path}");
    }
    Ok(username)
}

fn main() {
    //fs::write("config.dat", "").unwrap();
    match read_username("config.dat") {
        Ok(username) => println!("Username: {username}"),
        Err(err)     => println!("Error: {err:?}"),
    }
}
  • anyhow::Result<V> is a type alias for Result<V, anyhow::Error>.
  • anyhow::Error is essentially a wrapper around Box<dyn Error>. As such it’s again generally not a good choice for the public API of a library, but is widely used in applications.
  • Actual error type inside of it can be extracted for examination if necessary.
  • Functionality provided by anyhow::Result<T> may be familiar to Go developers, as it provides similar usage patterns and ergonomics to (T, error) from Go.

Testing

Rust and Cargo come with a simple unit test framework:

  • Unit tests are supported throughout your code.

  • Integration tests are supported via the tests/ directory.

Unit Tests

Mark unit tests with #[test]:

fn first_word(text: &str) -> &str {
    match text.find(' ') {
        Some(idx) => &text[..idx],
        None => &text,
    }
}

#[test]
fn test_empty() {
    assert_eq!(first_word(""), "");
}

#[test]
fn test_single_word() {
    assert_eq!(first_word("Hello"), "Hello");
}

#[test]
fn test_multiple_words() {
    assert_eq!(first_word("Hello World"), "Hello");
}

Use cargo test to find and run the unit tests.

Test Modules

Unit tests are often put in a nested module (run tests on the Playground):

fn helper(a: &str, b: &str) -> String {
    format!("{a} {b}")
}

pub fn main() {
    println!("{}", helper("Hello", "World"));
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_helper() {
        assert_eq!(helper("foo", "bar"), "foo bar");
    }
}
  • This lets you unit test private helpers.
  • The #[cfg(test)] attribute is only active when you run cargo test.

Documentation Tests

Rust has built-in support for documentation tests:

#![allow(unused)]
fn main() {
/// Shortens a string to the given length.
///
/// ```
/// use playground::shorten_string;
/// assert_eq!(shorten_string("Hello World", 5), "Hello");
/// assert_eq!(shorten_string("Hello World", 20), "Hello World");
/// ```
pub fn shorten_string(s: &str, length: usize) -> &str {
    &s[..std::cmp::min(length, s.len())]
}
}
  • Code blocks in /// comments are automatically seen as Rust code.
  • The code will be compiled and executed as part of cargo test.
  • Test the above code on the Rust Playground.

Integration Tests

If you want to test your library as a client, use an integration test.

Create a .rs file under tests/:

use my_library::init;

#[test]
fn test_init() {
    assert!(init().is_ok());
}

These tests only have access to the public API of your crate.

Unsafe Rust

The Rust language has two parts:

  • Safe Rust: memory safe, no undefined behavior possible.
  • Unsafe Rust: can trigger undefined behavior if preconditions are violated.

We will be seeing mostly safe Rust in this course, but it’s important to know what Unsafe Rust is.

Unsafe Rust gives you access to five new capabilities:

  • Dereference raw pointers.
  • Access or modify mutable static variables.
  • Access union fields.
  • Call unsafe functions, including extern functions.
  • Implement unsafe traits.

We will briefly cover these capabilities next. For full details, please see Chapter 19.1 in the Rust Book and the Rustonomicon.

Dereferencing Raw Pointers

Creating pointers is safe, but dereferencing them requires unsafe:

fn main() {
    let mut num = 5;

    let r1 = &mut num as *mut i32;
    let r2 = &num as *const i32;

    // Safe because r1 and r2 were obtained from references and so are guaranteed to be non-null and
    // properly aligned, the objects underlying the references from which they were obtained are
    // live throughout the whole unsafe block, and they are not accessed either through the
    // references or concurrently through any other pointers.
    unsafe {
        println!("r1 is: {}", *r1);
        *r1 = 10;
        println!("r2 is: {}", *r2);
    }
}

It is good practice (and required by the Android Rust style guide) to write a comment for each unsafe block explaining how the code inside it satisfies the safety requirements of the unsafe operations it is doing.

In the case of pointer dereferences, this means that the pointers must be valid, i.e.:

  • The pointer must be non-null.
  • The pointer must be dereferenceable (within the bounds of a single allocated object).
  • The object must not have been deallocated.
  • There must not be concurrent accesses to the same location.
  • If the pointer was obtained by casting a reference, the underlying object must be live and no reference may be used to access the memory.

In most cases the pointer must also be properly aligned.

Mutable Static Variables

It is safe to read an immutable static variable:

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
    println!("HELLO_WORLD: {}", HELLO_WORLD);
}

However, since data races can occur, it is unsafe to read and write mutable static variables:

static mut COUNTER: u32 = 0;

fn add_to_counter(inc: u32) {
    unsafe { COUNTER += inc; }  // Potential data race!
}

fn main() {
    add_to_counter(42);

    unsafe { println!("COUNTER: {}", COUNTER); }  // Potential data race!
}

Using a mutable static is generally a bad idea, but there are some cases where it might make sense in low-level no_std code, such as implementing a heap allocator or working with some C APIs.

Unions

Unions are like enums, but you need to track the active field yourself:

#[repr(C)]
union MyUnion {
    i: u8,
    b: bool,
}

fn main() {
    let u = MyUnion { i: 42 };
    println!("int: {}", unsafe { u.i });
    println!("bool: {}", unsafe { u.b });  // Undefined behavior!
}

Unions are very rarely needed in Rust as you can usually use an enum. They are occasionally needed for interacting with C library APIs.

If you just want to reinterpret bytes as a different type, you probably want std::mem::transmute or a safe wrapper such as the zerocopy crate.

Calling Unsafe Functions

A function or method can be marked unsafe if it has extra preconditions you must uphold to avoid undefined behaviour:

fn main() {
    let emojis = "🗻∈🌏";

    // Safe because the indices are in the correct order, within the bounds of
    // the string slice, and lie on UTF-8 sequence boundaries.
    unsafe {
        println!("{}", emojis.get_unchecked(0..4));
        println!("{}", emojis.get_unchecked(4..7));
        println!("{}", emojis.get_unchecked(7..11));
    }
}

Writing Unsafe Functions

You can mark your own functions as unsafe if they require particular conditions to avoid undefined behaviour.

/// Swaps the values pointed to by the given pointers.
///
/// # Safety
///
/// The pointers must be valid and properly aligned.
unsafe fn swap(a: *mut u8, b: *mut u8) {
    let temp = *a;
    *a = *b;
    *b = temp;
}

fn main() {
    let mut a = 42;
    let mut b = 66;

    // Safe because ...
    unsafe {
        swap(&mut a, &mut b);
    }

    println!("a = {}, b = {}", a, b);
}

We wouldn’t actually use pointers for this because it can be done safely with references.

Note that unsafe code is allowed within an unsafe function without an unsafe block. We can prohibit this with #[deny(unsafe_op_in_unsafe_fn)]. Try adding it and see what happens.

Calling External Code

Functions from other languages might violate the guarantees of Rust. Calling them is thus unsafe:

extern "C" {
    fn abs(input: i32) -> i32;
}

fn main() {
    unsafe {
        // Undefined behavior if abs misbehaves.
        println!("Absolute value of -3 according to C: {}", abs(-3));
    }
}

This is usually only a problem for extern functions which do things with pointers which might violate Rust’s memory model, but in general any C function might have undefined behaviour under any arbitrary circumstances.

The "C" in this example is the ABI; other ABIs are available too.

Implementing Unsafe Traits

Like with functions, you can mark a trait as unsafe if the implementation must guarantee particular conditions to avoid undefined behaviour.

For example, the zerocopy crate has an unsafe trait that looks something like this:

use std::mem::size_of_val;
use std::slice;

/// ...
/// # Safety
/// The type must have a defined representation and no padding.
pub unsafe trait AsBytes {
    fn as_bytes(&self) -> &[u8] {
        unsafe {
            slice::from_raw_parts(self as *const Self as *const u8, size_of_val(self))
        }
    }
}

// Safe because u32 has a defined representation and no padding.
unsafe impl AsBytes for u32 {}

There should be a # Safety section on the Rustdoc for the trait explaining the requirements for the trait to be safely implemented.

The actual safety section for AsBytes is rather longer and more complicated.

The built-in Send and Sync traits are unsafe.

Day 3: Afternoon Exercises

Let us build a safe wrapper for reading directory content!

After looking at the exercise, you can look at the [solution] provided.

Safe FFI Wrapper

Rust has great support for calling functions through a foreign function interface (FFI). We will use this to build a safe wrapper for the libc functions you would use from C to read the filenames of a directory.

You will want to consult the manual pages:

You will also want to browse the std::ffi module, particular for CStr and CString types which are used to hold NUL-terminated strings coming from C. The Nomicon also has a very useful chapter about FFI.

Copy the code below to https://play.rust-lang.org/ and fill in the missing functions and methods:

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

mod ffi {
    use std::os::raw::{c_char, c_int, c_long, c_ulong, c_ushort};

    // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
    #[repr(C)]
    pub struct DIR {
        _data: [u8; 0],
        _marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,
    }

    // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-gnu.
    #[repr(C)]
    pub struct dirent {
        pub d_ino: c_long,
        pub d_off: c_ulong,
        pub d_reclen: c_ushort,
        pub d_type: c_char,
        pub d_name: [c_char; 256],
    }

    extern "C" {
        pub fn opendir(s: *const c_char) -> *mut DIR;
        pub fn readdir(s: *mut DIR) -> *const dirent;
        pub fn closedir(s: *mut DIR) -> c_int;
    }
}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {
    path: CString,
    dir: *mut ffi::DIR,
}

impl DirectoryIterator {
    fn new(path: &str) -> Result<DirectoryIterator, String> {
        // Call opendir and return a Ok value if that worked,
        // otherwise return Err with a message.
        unimplemented!()
    }
}

impl Iterator for DirectoryIterator {
    type Item = OsString;
    fn next(&mut self) -> Option<OsString> {
        // Keep calling readdir until we get a NULL pointer back.
        unimplemented!()
    }
}

impl Drop for DirectoryIterator {
    fn drop(&mut self) {
        // Call closedir as needed.
        unimplemented!()
    }
}

fn main() -> Result<(), String> {
    let iter = DirectoryIterator::new(".")?;
    println!("files: {:#?}", iter.collect::<Vec<_>>());
    Ok(())
}

Welcome to Day 4

Today we will look at two main topics:

  • Concurrency: threads, channels, shared state, Send and Sync.

  • Android: building binaries and libraries, using AIDL, logging, and interoperability with C, C++, and Java.

We will attempt to call Rust from one of your own projects today. So try to find a little corner of your code base where we can move some lines of code to Rust. The fewer dependencies and “exotic” types the better. Something that parses some raw bytes would be ideal.

Fearless Concurrency

Rust has full support for concurrency using OS threads with mutexes and channels.

The Rust type system plays an important role in making many concurrency bugs compile time bugs. This is often referred to as fearless concurrency since you can rely on the compiler to ensure correctness at runtime.

Threads

Rust threads work similarly to threads in other languages:

use std::thread;
use std::time::Duration;

fn main() {
    thread::spawn(|| {
        for i in 1..10 {
            println!("Count in thread: {i}!");
            thread::sleep(Duration::from_millis(5));
        }
    });

    for i in 1..5 {
        println!("Main thread: {i}");
        thread::sleep(Duration::from_millis(5));
    }
}
  • Threads are all daemon threads, the main thread does not wait for them.
  • Thread panics are independent of each other.
    • Panics can carry a payload, which can be unpacked with downcast_ref.

要点:

  • Notice that the thread is stopped before it reaches 10 — the main thread is not waiting.

  • Use let handle = thread::spawn(...) and later handle.join() to wait for the thread to finish.

  • Trigger a panic in the thread, notice how this doesn’t affect main.

  • Use the Result return value from handle.join() to get access to the panic payload. This is a good time to talk about Any.

Scoped Threads

Normal threads cannot borrow from their environment:

use std::thread;

fn main() {
    let s = String::from("Hello");

    thread::spawn(|| {
        println!("Length: {}", s.len());
    });
}

However, you can use a scoped thread for this:

use std::thread;

fn main() {
    let s = String::from("Hello");

    thread::scope(|scope| {
        scope.spawn(|| {
            println!("Length: {}", s.len());
        });
    });
}
  • The reason for that is that when the thread::scope function completes, all the threads are guaranteed to be joined, so they can return borrowed data.
  • Normal Rust borrowing rules apply: you can either borrow mutably by one thread, or immutably by any number of threads.

Channels

Rust channels have two parts: a Sender<T> and a Receiver<T>. The two parts are connected via the channel, but you only see the end-points.

use std::sync::mpsc;
use std::thread;

fn main() {
    let (tx, rx) = mpsc::channel();

    tx.send(10).unwrap();
    tx.send(20).unwrap();

    println!("Received: {:?}", rx.recv());
    println!("Received: {:?}", rx.recv());

    let tx2 = tx.clone();
    tx2.send(30).unwrap();
    println!("Received: {:?}", rx.recv());
}
  • mpsc stands for Multi-Producer, Single-Consumer. Sender and SyncSender implement Clone (so you can make multiple producers) but Receiver does not.
  • send() and recv() return Result. If they return Err, it means the counterpart Sender or Receiver is dropped and the channel is closed.

Unbounded Channels

You get an unbounded and asynchronous channel with mpsc::channel():

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
    let (tx, rx) = mpsc::channel();

    thread::spawn(move || {
        let thread_id = thread::current().id();
        for i in 1..10 {
            tx.send(format!("Message {i}")).unwrap();
            println!("{thread_id:?}: sent Message {i}");
        }
        println!("{thread_id:?}: done");
    });
    thread::sleep(Duration::from_millis(100));

    for msg in rx.iter() {
        println!("Main: got {}", msg);
    }
}

Bounded Channels

Bounded and synchronous channels make send block the current thread:

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
    let (tx, rx) = mpsc::sync_channel(3);

    thread::spawn(move || {
        let thread_id = thread::current().id();
        for i in 1..10 {
            tx.send(format!("Message {i}")).unwrap();
            println!("{thread_id:?}: sent Message {i}");
        }
        println!("{thread_id:?}: done");
    });
    thread::sleep(Duration::from_millis(100));

    for msg in rx.iter() {
        println!("Main: got {}", msg);
    }
}

Shared State

Rust uses the type system to enforce synchronization of shared data. This is primarily done via two types:

  • Arc<T>, atomic reference counted T: handles sharing between threads and takes care to deallocate T when the last reference is dropped,
  • Mutex<T>: ensures mutually exclusive access to the T value.

Arc

Arc<T> allows shared read-only access via its clone method:

use std::thread;
use std::sync::Arc;

fn main() {
    let v = Arc::new(vec![10, 20, 30]);
    let mut handles = Vec::new();
    for _ in 1..5 {
        let v = v.clone();
        handles.push(thread::spawn(move || {
            let thread_id = thread::current().id();
            println!("{thread_id:?}: {v:?}");
        }));
    }

    handles.into_iter().for_each(|h| h.join().unwrap());
    println!("v: {v:?}");
}
  • Arc stands for “Atomic Reference Counted”, a thread safe version of Rc that uses atomic operations.
  • Arc<T> implements Clone whether or not T does. It implements Send and Sync iff T implements them both.
  • Arc::clone() has the cost of atomic operations that get executed, but after that the use of the T is free.
  • Beware of reference cycles, Arc does not use a garbage collector to detect them.
    • std::sync::Weak can help.

Mutex

Mutex<T> ensures mutual exclusion and allows mutable access to T behind a read-only interface:

use std::sync::Mutex;

fn main() {
    let v: Mutex<Vec<i32>> = Mutex::new(vec![10, 20, 30]);
    println!("v: {:?}", v.lock().unwrap());

    {
        let v: &Mutex<Vec<i32>> = &v;
        let mut guard = v.lock().unwrap();
        guard.push(40);
    }

    println!("v: {:?}", v.lock().unwrap());
}

Notice how we have a impl<T: Send> Sync for Mutex<T> blanket implementation.

  • Mutex in Rust looks like a collection with just one element - the protected data.
    • It is not possible to forget to acquire the mutex before accessing the protected data.
  • You can get an &mut T from an &Mutex<T> by taking the lock. The MutexGuard ensures that the &mut T doesn’t outlive the lock being held.
  • Mutex<T> implements both Send and Sync iff T implements Send.
  • A read-write lock counterpart - RwLock.
  • Why does lock() return a Result?
    • If the thread that held the Mutex panicked, the Mutex becomes “poisoned” to signal that the data it protected might be in an inconsistent state. Calling lock() on a poisoned mutex fails with a PoisonError. You can call into_inner() on the error to recover the data regardless.

Example

Let us see Arc and Mutex in action:

use std::thread;
// use std::sync::{Arc, Mutex};

fn main() {
    let mut v = vec![10, 20, 30];
    let handle = thread::spawn(|| {
        v.push(10);
    });
    v.push(1000);

    handle.join().unwrap();
    println!("v: {v:?}");
}

Possible solution:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    let v = Arc::new(Mutex::new(vec![10, 20, 30]));

    let v2 = v.clone();
    let handle = thread::spawn(move || {
        let mut v2 = v2.lock().unwrap();
        v2.push(10);
    });

    {
        let mut v = v.lock().unwrap();
        v.push(1000);
    }

    handle.join().unwrap();

    {
        let v = v.lock().unwrap();
        println!("v: {v:?}");
    }
}

Notable parts:

  • v is wrapped in both Arc and Mutex, because their concerns are orthogonal.
    • Wrapping a Mutex in an Arc is a common pattern to share mutable state between threads.
  • v: Arc<_> needs to be cloned as v2 before it can be moved into another thread. Note move was added to the lambda signature.
  • Blocks are introduced to narrow the scope of the LockGuard as much as possible.
  • We still need to acquire the Mutex to print our Vec.

Send and Sync

How does Rust know to forbid shared access across thread? The answer is in two traits:

  • Send: a type T is Send if it is safe to move a T across a thread boundary.
  • Sync: a type T is Sync if it is safe to move a &T across a thread boundary.

Send and Sync are unsafe traits. The compiler will automatically derive them for your types as long as they only contain Send and Sync types. You can also implement them manually when you know it is valid.

  • One can think of these traits as markers that the type has certain thread-safety properties.
  • They can be used in the generic constraints as normal traits.

Send

A type T is Send if it is safe to move a T value to another thread.

The effect of moving ownership to another thread is that destructors will run in that thread. So the question is when you can allocate a value in one thread and deallocate it in another.

Sync

A type T is Sync if it is safe to access a T value from multiple threads at the same time.

More precisely, the definition is:

T is Sync if and only if &T is Send

This statement is essentially a shorthand way of saying that if a type is thread-safe for shared use, it is also thread-safe to pass references of it across threads.

This is because if a type is Sync it means that it can be shared across multiple threads without the risk of data races or other synchronization issues, so it is safe to move it to another thread. A reference to the type is also safe to move to another thread, because the data it references can be accessed from any thread safely.

Examples

Send + Sync

Most types you come across are Send + Sync:

  • i8, f32, bool, char, &str, …
  • (T1, T2), [T; N], &[T], struct { x: T }, …
  • String, Option<T>, Vec<T>, Box<T>, …
  • Arc<T>: Explicitly thread-safe via atomic reference count.
  • Mutex<T>: Explicitly thread-safe via internal locking.
  • AtomicBool, AtomicU8, …: Uses special atomic instructions.

The generic types are typically Send + Sync when the type parameters are Send + Sync.

Send + !Sync

These types can be moved to other threads, but they’re not thread-safe. Typically because of interior mutability:

  • mpsc::Sender<T>
  • mpsc::Receiver<T>
  • Cell<T>
  • RefCell<T>

!Send + Sync

These types are thread-safe, but they cannot be moved to another thread:

  • MutexGuard<T>: Uses OS level primitives which must be deallocated on the thread which created them.

!Send + !Sync

These types are not thread-safe and cannot be moved to other threads:

  • Rc<T>: each Rc<T> has a reference to an RcBox<T>, which contains a non-atomic reference count.
  • *const T, *mut T: Rust assumes raw pointers may have special concurrency considerations.

Exercises

Let us practice our new concurrency skills with

  • Dining philosophers: a classic problem in concurrency.

  • Multi-threaded link checker: a larger project where you’ll use Cargo to download dependencies and then check links in parallel.

在看完练习后,你可以看看提供的解决方案

Dining Philosophers

The dining philosophers problem is a classic problem in concurrency:

Five philosophers dine together at the same table. Each philosopher has their own place at the table. There is a fork between each plate. The dish served is a kind of spaghetti which has to be eaten with two forks. Each philosopher can only alternately think and eat. Moreover, a philosopher can only eat their spaghetti when they have both a left and right fork. Thus two forks will only be available when their two nearest neighbors are thinking, not eating. After an individual philosopher finishes eating, they will put down both forks.

You will need a local Cargo installation for this exercise. Copy the code below to src/main.rs file, fill out the blanks, and test that cargo run does not deadlock:

use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

struct Philosopher {
    name: String,
    // left_fork: ...
    // right_fork: ...
    // thoughts: ...
}

impl Philosopher {
    fn think(&self) {
        self.thoughts
            .send(format!("Eureka! {} has a new idea!", &self.name))
            .unwrap();
    }

    fn eat(&self) {
        // Pick up forks...
        println!("{} is eating...", &self.name);
        thread::sleep(Duration::from_millis(10));
    }
}

static PHILOSOPHERS: &[&str] =
    &["Socrates", "Plato", "Aristotle", "Thales", "Pythagoras"];

fn main() {
    // Create forks

    // Create philosophers

    // Make them think and eat

    // Output their thoughts
}

Multi-threaded Link Checker

Let us use our new knowledge to create a multi-threaded link checker. It should start at a webpage and check that links on the page are valid. It should recursively check other pages on the same domain and keep doing this until all pages have been validated.

For this, you will need an HTTP client such as reqwest. Create a new Cargo project and reqwest it as a dependency with:

$ cargo new link-checker
$ cd link-checker
$ cargo add --features blocking,rustls-tls reqwest

If cargo add fails with error: no such subcommand, then please edit the Cargo.toml file by hand. Add the dependencies listed below.

You will also need a way to find links. We can use scraper for that:

$ cargo add scraper

Finally, we’ll need some way of handling errors. We thiserror for that:

$ cargo add thiserror

The cargo add calls will update the Cargo.toml file to look like this:

[dependencies]
reqwest = { version = "0.11.12", features = ["blocking", "rustls-tls"] }
scraper = "0.13.0"
thiserror = "1.0.37"

You can now download the start page. Try with a small site such as https://www.google.org/.

Your src/main.rs file should look something like this:

use reqwest::blocking::{get, Response};
use reqwest::Url;
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {
    #[error("request error: {0}")]
    ReqwestError(#[from] reqwest::Error),
}

fn extract_links(response: Response) -> Result<Vec<Url>, Error> {
    let base_url = response.url().to_owned();
    let document = response.text()?;
    let html = Html::parse_document(&document);
    let selector = Selector::parse("a").unwrap();

    let mut valid_urls = Vec::new();
    for element in html.select(&selector) {
        if let Some(href) = element.value().attr("href") {
            match base_url.join(href) {
                Ok(url) => valid_urls.push(url),
                Err(err) => {
                    println!("On {base_url}: could not parse {href:?}: {err} (ignored)",);
                }
            }
        }
    }

    Ok(valid_urls)
}

fn main() {
    let start_url = Url::parse("https://www.google.org").unwrap();
    let response = get(start_url).unwrap();
    match extract_links(response) {
        Ok(links) => println!("Links: {links:#?}"),
        Err(err) => println!("Could not extract links: {err:#}"),
    }
}

Run the code in src/main.rs with

$ cargo run

Tasks

  • Use threads to check the links in parallel: send the URLs to be checked to a channel and let a few threads check the URLs in parallel.
  • Extend this to recursively extract links from all pages on the www.google.org domain. Put an upper limit of 100 pages or so so that you don’t end up being blocked by the site.

Android

Rust is supported for native platform development on Android. This means that you can write new operating system services in Rust, as well as extending existing services.

Setup

We will be using an Android Virtual Device to test our code. Make sure you have access to one or create a new one with:

$ source build/envsetup.sh
$ lunch aosp_cf_x86_64_phone-userdebug
$ acloud create

Please see the Android Developer Codelab for details.

Build Rules

The Android build system (Soong) supports Rust via a number of modules:

Module TypeDescription
rust_binaryProduces a Rust binary.
rust_libraryProduces a Rust library, and provides both rlib and dylib variants.
rust_ffiProduces a Rust C library usable by cc modules, and provides both static and shared variants.
rust_proc_macroProduces a proc-macro Rust library. These are analogous to compiler plugins.
rust_testProduces a Rust test binary that uses the standard Rust test harness.
rust_fuzzProduces a Rust fuzz binary leveraging libfuzzer.
rust_protobufGenerates source and produces a Rust library that provides an interface for a particular protobuf.
rust_bindgenGenerates source and produces a Rust library containing Rust bindings to C libraries.

We will look at rust_binary and rust_library next.

Rust Binaries

Let us start with a simple application. At the root of an AOSP checkout, create the following files:

hello_rust/Android.bp:

rust_binary {
    name: "hello_rust",
    crate_name: "hello_rust",
    srcs: ["src/main.rs"],
}

hello_rust/src/main.rs:

//! Rust demo.

/// Prints a greeting to standard output.
fn main() {
    println!("Hello from Rust!");
}

You can now build, push, and run the binary:

$ m hello_rust
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust /data/local/tmp
$ adb shell /data/local/tmp/hello_rust
Hello from Rust!

Rust Libraries

You use rust_library to create a new Rust library for Android.

Here we declare a dependency on two libraries:

  • libgreeting, which we define below,
  • libtextwrap, which is a crate already vendored in external/rust/crates/.

hello_rust/Android.bp:

rust_binary {
    name: "hello_rust_with_dep",
    crate_name: "hello_rust_with_dep",
    srcs: ["src/main.rs"],
    rustlibs: [
        "libgreetings",
        "libtextwrap",
    ],
    prefer_rlib: true,
}

rust_library {
    name: "libgreetings",
    crate_name: "greetings",
    srcs: ["src/lib.rs"],
}

hello_rust/src/main.rs:

//! Rust demo.

use greetings::greeting;
use textwrap::fill;

/// Prints a greeting to standard output.
fn main() {
    println!("{}", fill(&greeting("Bob"), 24));
}

hello_rust/src/lib.rs:

//! Greeting library.

/// Greet `name`.
pub fn greeting(name: &str) -> String {
    format!("Hello {name}, it is very nice to meet you!")
}

You build, push, and run the binary like before:

$ m hello_rust_with_dep
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep /data/local/tmp
$ adb shell /data/local/tmp/hello_rust_with_dep
Hello Bob, it is very
nice to meet you!

AIDL

The Android Interface Definition Language (AIDL) is supported in Rust:

  • Rust code can call existing AIDL servers,
  • You can create new AIDL servers in Rust.

AIDL Interfaces

You declare the API of your service using an AIDL interface:

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {
    /** Generate a Happy Birthday message. */
    String wishHappyBirthday(String name, int years);
}

birthday_service/aidl/Android.bp:

aidl_interface {
    name: "com.example.birthdayservice",
    srcs: ["com/example/birthdayservice/*.aidl"],
    unstable: true,
    backend: {
        rust: { // Rust is not enabled by default
            enabled: true,
        },
    },
}

Add vendor_available: true if your AIDL file is used by a binary in the vendor partition.

Service Implementation

We can now implement the AIDL service:

birthday_service/src/lib.rs:

//! Implementation of the `IBirthdayService` AIDL interface.
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

/// The `IBirthdayService` implementation.
pub struct BirthdayService;

impl binder::Interface for BirthdayService {}

impl IBirthdayService for BirthdayService {
    fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String> {
        Ok(format!(
            "Happy Birthday {name}, congratulations with the {years} years!"
        ))
    }
}

birthday_service/Android.bp:

rust_library {
    name: "libbirthdayservice",
    srcs: ["src/lib.rs"],
    crate_name: "birthdayservice",
    rustlibs: [
        "com.example.birthdayservice-rust",
        "libbinder_rs",
    ],
}

AIDL Server

Finally, we can create a server which exposes the service:

birthday_service/src/server.rs:

//! Birthday service.
use birthdayservice::BirthdayService;
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::BnBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Entry point for birthday service.
fn main() {
    let birthday_service = BirthdayService;
    let birthday_service_binder = BnBirthdayService::new_binder(
        birthday_service,
        binder::BinderFeatures::default(),
    );
    binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder.as_binder())
        .expect("Failed to register service");
    binder::ProcessState::join_thread_pool()
}

birthday_service/Android.bp:

rust_binary {
    name: "birthday_server",
    crate_name: "birthday_server",
    srcs: ["src/server.rs"],
    rustlibs: [
        "com.example.birthdayservice-rust",
        "libbinder_rs",
        "libbirthdayservice",
    ],
    prefer_rlib: true,
}

Deploy

We can now build, push, and start the service:

$ m birthday_server
$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_server /data/local/tmp
$ adb shell /data/local/tmp/birthday_server

In another terminal, check that the service runs:

$ adb shell service check birthdayservice
Service birthdayservice: found

You can also call the service with service call:

$ $ adb shell service call birthdayservice 1 s16 Bob i32 24
Result: Parcel(
  0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'
  0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'
  0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'
  0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'
  0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'
  0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'
  0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'
  0x00000070: 00210073 00000000                   's.!.....        ')

AIDL Client

Finally, we can create a Rust client for our new service.

birthday_service/src/client.rs:

//! Birthday service.
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Connect to the BirthdayService.
pub fn connect() -> Result<binder::Strong<dyn IBirthdayService>, binder::StatusCode> {
    binder::get_interface(SERVICE_IDENTIFIER)
}

/// Call the birthday service.
fn main() -> Result<(), binder::Status> {
    let name = std::env::args()
        .nth(1)
        .unwrap_or_else(|| String::from("Bob"));
    let years = std::env::args()
        .nth(2)
        .and_then(|arg| arg.parse::<i32>().ok())
        .unwrap_or(42);

    binder::ProcessState::start_thread_pool();
    let service = connect().expect("Failed to connect to BirthdayService");
    let msg = service.wishHappyBirthday(&name, years)?;
    println!("{msg}");
    Ok(())
}

birthday_service/Android.bp:

rust_binary {
    name: "birthday_client",
    crate_name: "birthday_client",
    srcs: ["src/client.rs"],
    rustlibs: [
        "com.example.birthdayservice-rust",
        "libbinder_rs",
    ],
    prefer_rlib: true,
}

Notice that the client does not depend on libbirthdayservice.

Build, push, and run the client on your device:

$ m birthday_client
$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_client /data/local/tmp
$ adb shell /data/local/tmp/birthday_client Charlie 60
Happy Birthday Charlie, congratulations with the 60 years!

Changing API

Let us extend the API with more functionality: we want to let clients specify a list of lines for the birthday card:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {
    /** Generate a Happy Birthday message. */
    String wishHappyBirthday(String name, int years, in String[] text);
}

Logging

You should use the log crate to automatically log to logcat (on-device) or stdout (on-host):

hello_rust_logs/Android.bp:

rust_binary {
    name: "hello_rust_logs",
    crate_name: "hello_rust_logs",
    srcs: ["src/main.rs"],
    rustlibs: [
        "liblog_rust",
        "liblogger",
    ],
    prefer_rlib: true,
    host_supported: true,
}

hello_rust_logs/src/main.rs:

//! Rust logging demo.

use log::{debug, error, info};

/// Logs a greeting.
fn main() {
    logger::init(
        logger::Config::default()
            .with_tag_on_device("rust")
            .with_min_level(log::Level::Trace),
    );
    debug!("Starting program.");
    info!("Things are going fine.");
    error!("Something went wrong!");
}

Build, push, and run the binary on your device:

$ m hello_rust_logs
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs /data/local/tmp
$ adb shell /data/local/tmp/hello_rust_logs

The logs show up in adb logcat:

$ adb logcat -s rust
09-08 08:38:32.454  2420  2420 D rust: hello_rust_logs: Starting program.
09-08 08:38:32.454  2420  2420 I rust: hello_rust_logs: Things are going fine.
09-08 08:38:32.454  2420  2420 E rust: hello_rust_logs: Something went wrong!

Interoperability

Rust has excellent support for interoperability with other languages. This means that you can:

  • Call Rust functions from other languages.
  • Call functions written in other languages from Rust.

When you call functions in a foreign language we say that you’re using a foreign function interface, also known as FFI.

Interoperability with C

Rust has full support for linking object files with a C calling convention. Similarly, you can export Rust functions and call them from C.

You can do it by hand if you want:

extern "C" {
    fn abs(x: i32) -> i32;
}

fn main() {
    let x = -42;
    let abs_x = unsafe { abs(x) };
    println!("{x}, {abs_x}");
}

We already saw this in the Safe FFI Wrapper exercise.

This assumes full knowledge of the target platform. Not recommended for production.

We will look at better options next.

Using Bindgen

The bindgen tool can auto-generate bindings from a C header file.

First create a small C library:

interoperability/bindgen/libbirthday.h:

typedef struct card {
  const char* name;
  int years;
} card;

void print_card(const card* card);

interoperability/bindgen/libbirthday.c:

#include <stdio.h>
#include "libbirthday.h"

void print_card(const card* card) {
  printf("+--------------\n");
  printf("| Happy Birthday %s!\n", card->name);
  printf("| Congratulations with the %i years!\n", card->years);
  printf("+--------------\n");
}

Add this to your Android.bp file:

interoperability/bindgen/Android.bp:

cc_library {
    name: "libbirthday",
    srcs: ["libbirthday.c"],
}

Create a wrapper header file for the library (not strictly needed in this example):

interoperability/bindgen/libbirthday_wrapper.h:

#include "libbirthday.h"

You can now auto-generate the bindings:

interoperability/bindgen/Android.bp:

rust_bindgen {
    name: "libbirthday_bindgen",
    crate_name: "birthday_bindgen",
    wrapper_src: "libbirthday_wrapper.h",
    source_stem: "bindings",
    static_libs: ["libbirthday"],
}

Finally, we can use the bindings in our Rust program:

interoperability/bindgen/Android.bp:

rust_binary {
    name: "print_birthday_card",
    srcs: ["main.rs"],
    rustlibs: ["libbirthday_bindgen"],
}

interoperability/bindgen/main.rs:

//! Bindgen demo.

use birthday_bindgen::{card, print_card};

fn main() {
    let name = std::ffi::CString::new("Peter").unwrap();
    let card = card {
        name: name.as_ptr(),
        years: 42,
    };
    unsafe {
        print_card(&card as *const card);
    }
}

Build, push, and run the binary on your device:

$ m print_birthday_card
$ adb push $ANDROID_PRODUCT_OUT/system/bin/print_birthday_card /data/local/tmp
$ adb shell /data/local/tmp/print_birthday_card

Finally, we can run auto-generated tests to ensure the bindings work:

interoperability/bindgen/Android.bp:

rust_test {
    name: "libbirthday_bindgen_test",
    srcs: [":libbirthday_bindgen"],
    crate_name: "libbirthday_bindgen_test",
    test_suites: ["general-tests"],
    auto_gen_config: true,
    clippy_lints: "none", // Generated file, skip linting
    lints: "none",
}
$ atest libbirthday_bindgen_test

Calling Rust

Exporting Rust functions and types to C is easy:

interoperability/rust/libanalyze/analyze.rs

//! Rust FFI demo.
#![deny(improper_ctypes_definitions)]

use std::os::raw::c_int;

/// Analyze the numbers.
#[no_mangle]
pub extern "C" fn analyze_numbers(x: c_int, y: c_int) {
    if x < y {
        println!("x ({x}) is smallest!");
    } else {
        println!("y ({y}) is probably larger than x ({x})");
    }
}

interoperability/rust/libanalyze/analyze.h

#ifndef ANALYSE_H
#define ANALYSE_H

extern "C" {
void analyze_numbers(int x, int y);
}

#endif

interoperability/rust/libanalyze/Android.bp

rust_ffi {
    name: "libanalyze_ffi",
    crate_name: "analyze_ffi",
    srcs: ["analyze.rs"],
    include_dirs: ["."],
}

We can now call this from a C binary:

interoperability/rust/analyze/main.c

#include "analyze.h"

int main() {
  analyze_numbers(10, 20);
  analyze_numbers(123, 123);
  return 0;
}

interoperability/rust/analyze/Android.bp

cc_binary {
    name: "analyze_numbers",
    srcs: ["main.c"],
    static_libs: ["libanalyze_ffi"],
}

Build, push, and run the binary on your device:

$ m analyze_numbers
$ adb push $ANDROID_PRODUCT_OUT/system/bin/analyze_numbers /data/local/tmp
$ adb shell /data/local/tmp/analyze_numbers

#[no_mangle] disables Rust’s usual name mangling, so the exported symbol will just be the name of the function. You can also use #[export_name = "some_name"] to specify whatever name you want.

With C++

The CXX crate makes it possible to do safe interoperability between Rust and C++.

The overall approach looks like this:

See the CXX tutorial for an full example of using this.

Interoperability with Java

Java can load shared objects via Java Native Interface (JNI). The jni crate allows you to create a compatible library.

First, we create a Rust function to export to Java:

interoperability/java/src/lib.rs:

#![allow(unused)]
fn main() {
//! Rust <-> Java FFI demo.

use jni::objects::{JClass, JString};
use jni::sys::jstring;
use jni::JNIEnv;

/// HelloWorld::hello method implementation.
#[no_mangle]
pub extern "system" fn Java_HelloWorld_hello(
    env: JNIEnv,
    _class: JClass,
    name: JString,
) -> jstring {
    let input: String = env.get_string(name).unwrap().into();
    let greeting = format!("Hello, {input}!");
    let output = env.new_string(greeting).unwrap();
    output.into_inner()
}
}

interoperability/java/Android.bp:

rust_ffi_shared {
    name: "libhello_jni",
    crate_name: "hello_jni",
    srcs: ["src/lib.rs"],
    rustlibs: ["libjni"],
}

Finally, we can call this function from Java:

interoperability/java/HelloWorld.java:

class HelloWorld {
    private static native String hello(String name);

    static {
        System.loadLibrary("hello_jni");
    }

    public static void main(String[] args) {
        String output = HelloWorld.hello("Alice");
        System.out.println(output);
    }
}

interoperability/java/Android.bp:

java_binary {
    name: "helloworld_jni",
    srcs: ["HelloWorld.java"],
    main_class: "HelloWorld",
    required: ["libhello_jni"],
}

Finally, you can build, sync, and run the binary:

$ m helloworld_jni
$ adb sync  # requires adb root && adb remount
$ adb shell /system/bin/helloworld_jni

Exercises

For the last exercise, we will look at one of the projects you work with. Let us group up and do this together. Some suggestions:

  • Call your AIDL service with a client written in Rust.

  • Move a function from your project to Rust and call it.

No solution is provided here since this is open-ended: it relies on someone in the class having a piece of code which you can turn in to Rust on the fly.

Thanks!

Thank you for taking Comprehensive Rust 🦀! We hope you enjoyed it and that it was useful.

We’ve had a lot of fun putting the course together. The course is not perfect, so if you spotted any mistakes or have ideas for improvements, please get in contact with us on GitHub. We would love to hear from you.

Other Rust Resources

The Rust community has created a wealth of high-quality and free resources online.

Official Documentation

The Rust project hosts many resources. These cover Rust in general:

  • The Rust Programming Language: the canonical free book about Rust. Covers the language in detail and includes a few projects for people to build.
  • Rust By Example: covers the Rust syntax via a series of examples which showcase different constructs. Sometimes includes small exercises where you are asked to expand on the code in the examples.
  • Rust Standard Library: full documentation of the standard library for Rust.
  • The Rust Reference: an incomplete book which describes the Rust grammar and memory model.

More specialized guides hosted on the official Rust site:

  • The Rustonomicon: covers unsafe Rust, including working with raw pointers and interfacing with other languages (FFI).
  • Asynchronous Programming in Rust: covers the new asynchronous programming model which was introduced after the Rust Book was written.
  • The Embedded Rust Book: an introduction to using Rust on embedded devices without an operating system.

Unofficial Learning Material

A small selection of other guides and tutorial for Rust:

Please see the Little Book of Rust Books for even more Rust books.

Credits

The material here builds on top of the many great sources of Rust documentation. See the page on other resources for a full list of useful resources.

The material of Comprehensive Rust is licensed under the terms of the Apache 2.0 license, please see LICENSE.txt for details.

Rust by Example

Some examples and exercises have been copied and adapted from Rust by Example. Please see the third_party/rust-by-example/ directory for details, including the license terms.

Rust on Exercism

Some exercises have been copied and adapted from Rust on Exercism. Please see the third_party/rust-on-exercism/ directory for details, including the license terms.

CXX

The Interoperability with C++ section uses an image from CXX. Please see the third_party/cxx/ directory for details, including the license terms.

Solutions

You will find solutions to the exercises on the following pages.

Feel free to ask questions about the solutions on GitHub. Let us know if you have a different or better solution than what is presented here.

Note: Please ignore the // ANCHOR: label and // ANCHOR_END: label comments you see in the solutions. They are there to make it possible to re-use parts of the solutions as the exercises.

Day 1 Morning Exercises

Arrays and for Loops

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: transpose
fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
    // ANCHOR_END: transpose
    let mut result = [[0; 3]; 3];
    for i in 0..3 {
        for j in 0..3 {
            result[j][i] = matrix[i][j];
        }
    }
    return result;
}

// ANCHOR: pretty_print
fn pretty_print(matrix: &[[i32; 3]; 3]) {
    // ANCHOR_END: pretty_print
    for row in matrix {
        println!("{row:?}");
    }
}

// ANCHOR: tests
#[test]
fn test_transpose() {
    let matrix = [
        [101, 102, 103], //
        [201, 202, 203],
        [301, 302, 303],
    ];
    let transposed = transpose(matrix);
    assert_eq!(
        transposed,
        [
            [101, 201, 301], //
            [102, 202, 302],
            [103, 203, 303],
        ]
    );
}
// ANCHOR_END: tests

// ANCHOR: main
fn main() {
    let matrix = [
        [101, 102, 103], // <-- the comment makes rustfmt add a newline
        [201, 202, 203],
        [301, 302, 303],
    ];

    println!("matrix:");
    pretty_print(&matrix);

    let transposed = transpose(matrix);
    println!("transposed:");
    pretty_print(&transposed);
}

Bonus question

It honestly doesn’t work so well. It might seem that we could use a slice-of-slices (&[&[i32]]) as the input type to transpose and thus make our function handle any size of matrix. However, this quickly breaks down: the return type cannot be &[&[i32]] since it needs to own the data you return.

You can attempt to use something like Vec<Vec<i32>>, but this doesn’t work very well either: it’s hard to convert from Vec<Vec<i32>> to &[&[i32]] so now you cannot easily use pretty_print either.

In addition, the type itself would not enforce that the child slices are of the same length, so such variable could contain an invalid matrix.

Day 1 Afternoon Exercises

Designing a Library

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: setup
struct Library {
    books: Vec<Book>,
}

struct Book {
    title: String,
    year: u16,
}

impl Book {
    // This is a constructor, used below.
    fn new(title: &str, year: u16) -> Book {
        Book {
            title: String::from(title),
            year,
        }
    }
}

// This makes it possible to print Book values with {}.
impl std::fmt::Display for Book {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{} ({})", self.title, self.year)
    }
}
// ANCHOR_END: setup

// ANCHOR: Library_new
impl Library {
    fn new() -> Library {
        // ANCHOR_END: Library_new
        Library { books: Vec::new() }
    }

    // ANCHOR: Library_len
    //fn len(self) -> usize {
    //    unimplemented!()
    //}
    // ANCHOR_END: Library_len
    fn len(&self) -> usize {
        self.books.len()
    }

    // ANCHOR: Library_is_empty
    //fn is_empty(self) -> bool {
    //    unimplemented!()
    //}
    // ANCHOR_END: Library_is_empty
    fn is_empty(&self) -> bool {
        self.books.is_empty()
    }

    // ANCHOR: Library_add_book
    //fn add_book(self, book: Book) {
    //    unimplemented!()
    //}
    // ANCHOR_END: Library_add_book
    fn add_book(&mut self, book: Book) {
        self.books.push(book)
    }

    // ANCHOR: Library_print_books
    //fn print_books(self) {
    //    unimplemented!()
    //}
    // ANCHOR_END: Library_print_books
    fn print_books(&self) {
        for book in &self.books {
            println!("{}", book);
        }
    }

    // ANCHOR: Library_oldest_book
    //fn oldest_book(self) -> Option<&Book> {
    //    unimplemented!()
    //}
    // ANCHOR_END: Library_oldest_book
    fn oldest_book(&self) -> Option<&Book> {
        self.books.iter().min_by_key(|book| book.year)
    }
}

// ANCHOR: main
// This shows the desired behavior. Uncomment the code below and
// implement the missing methods. You will need to update the
// method signatures, including the "self" parameter! You may
// also need to update the variable bindings within main.
fn main() {
    let library = Library::new();

    //println!("Our library is empty: {}", library.is_empty());
    //
    //library.add_book(Book::new("Lord of the Rings", 1954));
    //library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
    //
    //library.print_books();
    //
    //match library.oldest_book() {
    //    Some(book) => println!("My oldest book is {book}"),
    //    None => println!("My library is empty!"),
    //}
    //
    //println!("Our library has {} books", library.len());
}
// ANCHOR_END: main

#[test]
fn test_library_len() {
    let mut library = Library::new();
    assert_eq!(library.len(), 0);
    assert!(library.is_empty());

    library.add_book(Book::new("Lord of the Rings", 1954));
    library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
    assert_eq!(library.len(), 2);
    assert!(!library.is_empty());
}

#[test]
fn test_library_is_empty() {
    let mut library = Library::new();
    assert!(library.is_empty());

    library.add_book(Book::new("Lord of the Rings", 1954));
    assert!(!library.is_empty());
}

#[test]
fn test_library_print_books() {
    let mut library = Library::new();
    library.add_book(Book::new("Lord of the Rings", 1954));
    library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
    // We could try and capture stdout, but let us just call the
    // method to start with.
    library.print_books();
}

#[test]
fn test_library_oldest_book() {
    let mut library = Library::new();
    assert!(library.oldest_book().is_none());

    library.add_book(Book::new("Lord of the Rings", 1954));
    assert_eq!(
        library.oldest_book().map(|b| b.title.as_str()),
        Some("Lord of the Rings")
    );

    library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
    assert_eq!(
        library.oldest_book().map(|b| b.title.as_str()),
        Some("Alice's Adventures in Wonderland")
    );
}

Day 2 Morning Exercises

Points and Polygons

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
// ANCHOR: Point
pub struct Point {
    // ANCHOR_END: Point
    x: i32,
    y: i32,
}

// ANCHOR: Point-impl
impl Point {
    // ANCHOR_END: Point-impl
    pub fn new(x: i32, y: i32) -> Point {
        Point { x, y }
    }

    pub fn magnitude(self) -> f64 {
        f64::from(self.x.pow(2) + self.y.pow(2)).sqrt()
    }

    pub fn dist(self, other: Point) -> f64 {
        (self - other).magnitude()
    }
}

impl std::ops::Add for Point {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl std::ops::Sub for Point {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

// ANCHOR: Polygon
pub struct Polygon {
    // ANCHOR_END: Polygon
    points: Vec<Point>,
}

// ANCHOR: Polygon-impl
impl Polygon {
    // ANCHOR_END: Polygon-impl
    pub fn new() -> Polygon {
        Polygon { points: Vec::new() }
    }

    pub fn add_point(&mut self, point: Point) {
        self.points.push(point);
    }

    pub fn left_most_point(&self) -> Option<Point> {
        self.points.iter().min_by_key(|p| p.x).copied()
    }

    pub fn iter(&self) -> impl Iterator<Item = &Point> {
        self.points.iter()
    }

    pub fn length(&self) -> f64 {
        if self.points.is_empty() {
            return 0.0;
        }

        let mut result = 0.0;
        let mut last_point = self.points[0];
        for point in &self.points[1..] {
            result += last_point.dist(*point);
            last_point = *point;
        }
        result += last_point.dist(self.points[0]);
        result
    }
}

// ANCHOR: Circle
pub struct Circle {
    // ANCHOR_END: Circle
    center: Point,
    radius: i32,
}

// ANCHOR: Circle-impl
impl Circle {
    // ANCHOR_END: Circle-impl
    pub fn new(center: Point, radius: i32) -> Circle {
        Circle { center, radius }
    }

    pub fn circumference(&self) -> f64 {
        2.0 * std::f64::consts::PI * f64::from(self.radius)
    }

    pub fn dist(&self, other: &Self) -> f64 {
        self.center.dist(other.center)
    }
}

// ANCHOR: Shape
pub enum Shape {
    Polygon(Polygon),
    Circle(Circle),
}
// ANCHOR_END: Shape

impl From<Polygon> for Shape {
    fn from(poly: Polygon) -> Self {
        Shape::Polygon(poly)
    }
}

impl From<Circle> for Shape {
    fn from(circle: Circle) -> Self {
        Shape::Circle(circle)
    }
}

impl Shape {
    pub fn perimeter(&self) -> f64 {
        match self {
            Shape::Polygon(poly) => poly.length(),
            Shape::Circle(circle) => circle.circumference(),
        }
    }
}

// ANCHOR: unit-tests
#[cfg(test)]
mod tests {
    use super::*;

    fn round_two_digits(x: f64) -> f64 {
        (x * 100.0).round() / 100.0
    }

    #[test]
    fn test_point_magnitude() {
        let p1 = Point::new(12, 13);
        assert_eq!(round_two_digits(p1.magnitude()), 17.69);
    }

    #[test]
    fn test_point_dist() {
        let p1 = Point::new(10, 10);
        let p2 = Point::new(14, 13);
        assert_eq!(round_two_digits(p1.dist(p2)), 5.00);
    }

    #[test]
    fn test_point_add() {
        let p1 = Point::new(16, 16);
        let p2 = p1 + Point::new(-4, 3);
        assert_eq!(p2, Point::new(12, 19));
    }

    #[test]
    fn test_polygon_left_most_point() {
        let p1 = Point::new(12, 13);
        let p2 = Point::new(16, 16);

        let mut poly = Polygon::new();
        poly.add_point(p1);
        poly.add_point(p2);
        assert_eq!(poly.left_most_point(), Some(p1));
    }

    #[test]
    fn test_polygon_iter() {
        let p1 = Point::new(12, 13);
        let p2 = Point::new(16, 16);

        let mut poly = Polygon::new();
        poly.add_point(p1);
        poly.add_point(p2);

        let points = poly.iter().cloned().collect::<Vec<_>>();
        assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);
    }

    #[test]
    fn test_shape_perimeters() {
        let mut poly = Polygon::new();
        poly.add_point(Point::new(12, 13));
        poly.add_point(Point::new(17, 11));
        poly.add_point(Point::new(16, 16));
        let shapes = vec![
            Shape::from(poly),
            Shape::from(Circle::new(Point::new(10, 20), 5)),
        ];
        let perimeters = shapes
            .iter()
            .map(Shape::perimeter)
            .map(round_two_digits)
            .collect::<Vec<_>>();
        assert_eq!(perimeters, vec![15.48, 31.42]);
    }
}
// ANCHOR_END: unit-tests

#[allow(dead_code)]
fn main() {}

Day 2 Afternoon Exercises

Luhn Algorithm

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: luhn
pub fn luhn(cc_number: &str) -> bool {
    // ANCHOR_END: luhn
    let mut digits_seen = 0;
    let mut sum = 0;
    for (i, ch) in cc_number.chars().rev().filter(|&ch| ch != ' ').enumerate() {
        match ch.to_digit(10) {
            Some(d) => {
                sum += if i % 2 == 1 {
                    let dd = d * 2;
                    dd / 10 + dd % 10
                } else {
                    d
                };
                digits_seen += 1;
            }
            None => return false,
        }
    }

    if digits_seen < 2 {
        return false;
    }

    sum % 10 == 0
}

fn main() {
    let cc_number = "1234 5678 1234 5670";
    println!(
        "Is {} a valid credit card number? {}",
        cc_number,
        if luhn(cc_number) { "yes" } else { "no" }
    );
}

// ANCHOR: unit-tests
#[test]
fn test_non_digit_cc_number() {
    assert!(!luhn("foo"));
}

#[test]
fn test_empty_cc_number() {
    assert!(!luhn(""));
    assert!(!luhn(" "));
    assert!(!luhn("  "));
    assert!(!luhn("    "));
}

#[test]
fn test_single_digit_cc_number() {
    assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {
    assert!(luhn(" 0 0 "));
}

#[test]
fn test_valid_cc_number() {
    assert!(luhn("4263 9826 4026 9299"));
    assert!(luhn("4539 3195 0343 6467"));
    assert!(luhn("7992 7398 713"));
}

#[test]
fn test_invalid_cc_number() {
    assert!(!luhn("4223 9826 4026 9299"));
    assert!(!luhn("4539 3195 0343 6476"));
    assert!(!luhn("8273 1232 7352 0569"));
}
// ANCHOR_END: unit-tests

Strings and Iterators

(back to exercise)

#![allow(unused)]
fn main() {
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: prefix_matches
pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {
    // ANCHOR_END: prefix_matches
    let prefixes = prefix.split('/');
    let request_paths = request_path
        .split('/')
        .map(|p| Some(p))
        .chain(std::iter::once(None));

    for (prefix, request_path) in prefixes.zip(request_paths) {
        match request_path {
            Some(request_path) => {
                if (prefix != "*") && (prefix != request_path) {
                    return false;
                }
            }
            None => return false,
        }
    }
    true
}

// ANCHOR: unit-tests
#[test]
fn test_matches_without_wildcard() {
    assert!(prefix_matches("/v1/publishers", "/v1/publishers"));
    assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc-123"));
    assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc/books"));

    assert!(!prefix_matches("/v1/publishers", "/v1"));
    assert!(!prefix_matches("/v1/publishers", "/v1/publishersBooks"));
    assert!(!prefix_matches("/v1/publishers", "/v1/parent/publishers"));
}

#[test]
fn test_matches_with_wildcard() {
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/books"
    ));
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/bar/books"
    ));
    assert!(prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/books/book1"
    ));

    assert!(!prefix_matches("/v1/publishers/*/books", "/v1/publishers"));
    assert!(!prefix_matches(
        "/v1/publishers/*/books",
        "/v1/publishers/foo/booksByAuthor"
    ));
}
// ANCHOR_END: unit-tests
}

Day 3 Morning Exercise

A Simple GUI Library

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: setup
pub trait Widget {
    /// Natural width of `self`.
    fn width(&self) -> usize;

    /// Draw the widget into a buffer.
    fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

    /// Draw the widget on standard output.
    fn draw(&self) {
        let mut buffer = String::new();
        self.draw_into(&mut buffer);
        println!("{}", &buffer);
    }
}

pub struct Label {
    label: String,
}

impl Label {
    fn new(label: &str) -> Label {
        Label {
            label: label.to_owned(),
        }
    }
}

pub struct Button {
    label: Label,
    callback: Box<dyn FnMut()>,
}

impl Button {
    fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {
        Button {
            label: Label::new(label),
            callback,
        }
    }
}

pub struct Window {
    title: String,
    widgets: Vec<Box<dyn Widget>>,
}

impl Window {
    fn new(title: &str) -> Window {
        Window {
            title: title.to_owned(),
            widgets: Vec::new(),
        }
    }

    fn add_widget(&mut self, widget: Box<dyn Widget>) {
        self.widgets.push(widget);
    }
}

// ANCHOR_END: setup

// ANCHOR: Window-width
impl Widget for Window {
    fn width(&self) -> usize {
        // ANCHOR_END: Window-width
        std::cmp::max(
            self.title.chars().count(),
            self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),
        )
    }

    // ANCHOR: Window-draw_into
    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        // ANCHOR_END: Window-draw_into
        let mut inner = String::new();
        for widget in &self.widgets {
            widget.draw_into(&mut inner);
        }

        let window_width = self.width();

        // TODO: after learning about error handling, you can change
        // draw_into to return Result<(), std::fmt::Error>. Then use
        // the ?-operator here instead of .unwrap().
        writeln!(buffer, "+-{:-<window_width$}-+", "").unwrap();
        writeln!(buffer, "| {:^window_width$} |", &self.title).unwrap();
        writeln!(buffer, "+={:=<window_width$}=+", "").unwrap();
        for line in inner.lines() {
            writeln!(buffer, "| {:window_width$} |", line).unwrap();
        }
        writeln!(buffer, "+-{:-<window_width$}-+", "").unwrap();
    }
}

// ANCHOR: Button-width
impl Widget for Button {
    fn width(&self) -> usize {
        // ANCHOR_END: Button-width
        self.label.width() + 8 // add a bit of padding
    }

    // ANCHOR: Button-draw_into
    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        // ANCHOR_END: Button-draw_into
        let width = self.width();
        let mut label = String::new();
        self.label.draw_into(&mut label);

        writeln!(buffer, "+{:-<width$}+", "").unwrap();
        for line in label.lines() {
            writeln!(buffer, "|{:^width$}|", &line).unwrap();
        }
        writeln!(buffer, "+{:-<width$}+", "").unwrap();
    }
}

// ANCHOR: Label-width
impl Widget for Label {
    fn width(&self) -> usize {
        // ANCHOR_END: Label-width
        self.label
            .lines()
            .map(|line| line.chars().count())
            .max()
            .unwrap_or(0)
    }

    // ANCHOR: Label-draw_into
    fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
        // ANCHOR_END: Label-draw_into
        writeln!(buffer, "{}", &self.label).unwrap();
    }
}

// ANCHOR: main
fn main() {
    let mut window = Window::new("Rust GUI Demo 1.23");
    window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
    window.add_widget(Box::new(Button::new(
        "Click me!",
        Box::new(|| println!("You clicked the button!")),
    )));
    window.draw();
}
// ANCHOR_END: main

Day 3 Afternoon Exercises

Safe FFI Wrapper

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: ffi
mod ffi {
    use std::os::raw::{c_char, c_int, c_long, c_ulong, c_ushort};

    // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
    #[repr(C)]
    pub struct DIR {
        _data: [u8; 0],
        _marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,
    }

    // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-gnu.
    #[repr(C)]
    pub struct dirent {
        pub d_ino: c_long,
        pub d_off: c_ulong,
        pub d_reclen: c_ushort,
        pub d_type: c_char,
        pub d_name: [c_char; 256],
    }

    extern "C" {
        pub fn opendir(s: *const c_char) -> *mut DIR;
        pub fn readdir(s: *mut DIR) -> *const dirent;
        pub fn closedir(s: *mut DIR) -> c_int;
    }
}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {
    path: CString,
    dir: *mut ffi::DIR,
}
// ANCHOR_END: ffi

// ANCHOR: DirectoryIterator
impl DirectoryIterator {
    fn new(path: &str) -> Result<DirectoryIterator, String> {
        // Call opendir and return a Ok value if that worked,
        // otherwise return Err with a message.
        // ANCHOR_END: DirectoryIterator
        let path = CString::new(path).map_err(|err| format!("Invalid path: {err}"))?;
        // SAFETY: path.as_ptr() cannot be NULL.
        let dir = unsafe { ffi::opendir(path.as_ptr()) };
        if dir.is_null() {
            Err(format!("Could not open {:?}", path))
        } else {
            Ok(DirectoryIterator { path, dir })
        }
    }
}

// ANCHOR: Iterator
impl Iterator for DirectoryIterator {
    type Item = OsString;
    fn next(&mut self) -> Option<OsString> {
        // Keep calling readdir until we get a NULL pointer back.
        // ANCHOR_END: Iterator
        // SAFETY: self.dir is never NULL.
        let dirent = unsafe { ffi::readdir(self.dir) };
        if dirent.is_null() {
            // We have reached the end of the directory.
            return None;
        }
        // SAFETY: dirent is not NULL and dirent.d_name is NUL
        // terminated.
        let d_name = unsafe { CStr::from_ptr((*dirent).d_name.as_ptr()) };
        let os_str = OsStr::from_bytes(d_name.to_bytes());
        Some(os_str.to_owned())
    }
}

// ANCHOR: Drop
impl Drop for DirectoryIterator {
    fn drop(&mut self) {
        // Call closedir as needed.
        // ANCHOR_END: Drop
        if !self.dir.is_null() {
            // SAFETY: self.dir is not NULL.
            if unsafe { ffi::closedir(self.dir) } != 0 {
                panic!("Could not close {:?}", self.path);
            }
        }
    }
}

// ANCHOR: main
fn main() -> Result<(), String> {
    let iter = DirectoryIterator::new(".")?;
    println!("files: {:#?}", iter.collect::<Vec<_>>());
    Ok(())
}
// ANCHOR_END: main

Day 4 Morning Exercise

Dining Philosophers

(back to exercise)

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: Philosopher
use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

struct Philosopher {
    name: String,
    // ANCHOR_END: Philosopher
    left_fork: Arc<Mutex<Fork>>,
    right_fork: Arc<Mutex<Fork>>,
    thoughts: mpsc::SyncSender<String>,
}

// ANCHOR: Philosopher-think
impl Philosopher {
    fn think(&self) {
        self.thoughts
            .send(format!("Eureka! {} has a new idea!", &self.name))
            .unwrap();
    }
    // ANCHOR_END: Philosopher-think

    // ANCHOR: Philosopher-eat
    fn eat(&self) {
        // ANCHOR_END: Philosopher-eat
        println!("{} is trying to eat", &self.name);
        let left = self.left_fork.lock().unwrap();
        let right = self.right_fork.lock().unwrap();

        // ANCHOR: Philosopher-eat-end
        println!("{} is eating...", &self.name);
        thread::sleep(Duration::from_millis(10));
    }
}

static PHILOSOPHERS: &[&str] =
    &["Socrates", "Plato", "Aristotle", "Thales", "Pythagoras"];

fn main() {
    // ANCHOR_END: Philosopher-eat-end
    let (tx, rx) = mpsc::sync_channel(10);

    let forks = (0..PHILOSOPHERS.len())
        .map(|_| Arc::new(Mutex::new(Fork)))
        .collect::<Vec<_>>();

    for i in 0..forks.len() {
        let tx = tx.clone();
        let mut left_fork = forks[i].clone();
        let mut right_fork = forks[(i + 1) % forks.len()].clone();

        // To avoid a deadlock, we have to break the symmetry
        // somewhere. This will swap the forks without deinitializing
        // either of them.
        if i == forks.len() - 1 {
            std::mem::swap(&mut left_fork, &mut right_fork);
        }

        let philosopher = Philosopher {
            name: PHILOSOPHERS[i].to_string(),
            thoughts: tx,
            left_fork,
            right_fork,
        };

        thread::spawn(move || {
            for _ in 0..100 {
                philosopher.eat();
                philosopher.think();
            }
        });
    }

    drop(tx);
    for thought in rx {
        println!("{}", thought);
    }
}