Example
Let us see Arc
and Mutex
in action:
use std::thread; // use std::sync::{Arc, Mutex}; fn main() { let mut v = vec![10, 20, 30]; let handle = thread::spawn(|| { v.push(10); }); v.push(1000); handle.join().unwrap(); println!("v: {v:?}"); }
Possible solution:
use std::sync::{Arc, Mutex}; use std::thread; fn main() { let v = Arc::new(Mutex::new(vec![10, 20, 30])); let v2 = v.clone(); let handle = thread::spawn(move || { let mut v2 = v2.lock().unwrap(); v2.push(10); }); { let mut v = v.lock().unwrap(); v.push(1000); } handle.join().unwrap(); { let v = v.lock().unwrap(); println!("v: {v:?}"); } }
Notable parts:
v
is wrapped in bothArc
andMutex
, because their concerns are orthogonal.- Wrapping a
Mutex
in anArc
is a common pattern to share mutable state between threads.
- Wrapping a
v: Arc<_>
needs to be cloned asv2
before it can be moved into another thread. Notemove
was added to the lambda signature.- Blocks are introduced to narrow the scope of the
LockGuard
as much as possible. - We still need to acquire the
Mutex
to print ourVec
.